首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Oxygen and carbon isotopic analyses were carried out for some typical submarine volcanic products (a lava flow, a pillow fragment and four hyaloclastite breccias) from the northwestern zone of the Mt. Iblei volcanic complex, eastern Sicily. The δ18O value of the perental basaltic magma (6.0 ± 0.2‰), estimated from the analyses of some fresh unaltered glassy samples of various type, lies in the values range of primary basalts. Appreciably higher δ18O values, probably due to low-temperature exchanges with sea water, have been found for lava samples and the interior of the pillow fragment. The δ18O and δ13C of the calcites of the groundmass of the hyaloclastite samples, ranging from 30.59 to 33.65 and from ?2.99 to 0.46‰ respectively, are typical of low-temperature marine carbonates. Because calcite is one of the last minerals to form. these results suggest that the hyaloclastites studied formed entirely in a submarine environment. The18O/16O ratios recorded in the silicate portions of the matrices of the hyaloclasites (δ18O=13.99 to 16.61) are interpreted as the result of halmyrolytic processes occurring at temperatures somewhat higher than that of the sea floor.  相似文献   

2.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

3.
Whole-rock oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active geothermal systems within the caldera. The deep Clay Pit-1 and Mammoth-1 wells on the resurgent dome penetrate mildly to strongly altered Bishop Tuff with δ18OWR values as low as −2.6% (vs V-SMOW). The idfu 44-16 well intercepts a thinner Bishop Tuff section with δ18OWR values of +0.4 to +2.3%. in the western caldera moat, where milder and more sporadic 18O depletions occur in Tertiary volcanic rocks of the western caldera floor (δ18OWR = +2.2 to +6.4‰). Bishop Tuff samples from deeper parts of the 715 m rdo-8 (Shady Rest) well in the SW moat are also strongly depleted in 18O (δ18OWR = −1.5 to +0.6‰). Four shallow thermal gradient wells (469–715 m td drilled in the western moat did not penetrate Bishop Tuff, but Early Rhyolites from two of these holes are depleted in 18O (δ18OWR = −1.2 to +6.0‰ inplv-1 +4.6 to +5.3%. inmlgrap-1), compared to lithologic equivalents from the other two holes (δ18OWR = +6.3 to +8.0‰ inplv-2 andmlgrap-2).Whole-rock oxygen isotope profiles for the resurgent dome wells are unlike profiles calculated assuming alkali feldspar-H2O fractionation behavior and total O-isotopic equilibration with −14.3‰ fluids at measured temperatures. The sense of this divergence implies an earlier hydrothermal episode within the central caldera driven by one or more shallow intrusions. Geochemical similarities between an intrusive granophyre at the bottom of the Clay Pit-1 well and a nearby Moat Rhyolite dome with a K/Ar cooling age of 0.5 Ma suggest that vigorous hydrothermal activity beneath the central resurgent dome may have occurred as much as 0.5 m.y. ago. Calculated and measured O-isotope profiles are similar for deep wells that penetrate the western moat of the caldera, where steep temperature gradients and low δ18OWR values in Early Rhyolites from plv-1 are attributed to an active hydrothermal aquifer that has descended slightly from earlier, shallower elevations. Similarly, severe 18O depletions in Bishop Tuff samples from the idfu 44-16 and rdo-8 wells reflect active convection beneath the western moat, whereas milder 18O depletions in Early Rhyolites from mlgrap-1 were apparently caused by hydrothermal alteration at lower temperatures. The O-isotope profiles imply that surface discharge within and around the resurgent dome results from shallow, eastward-directed outflow from a zone of higher enthalpy hydrothermal upflow beneath the western caldera moat. Intrusive magmatic heat source(s) are inferred to exist beneath the western moat, perhaps beneath Mammoth Mountain.  相似文献   

4.
At three sample sites where there are good exposures of the upper 15 m of the 1912 ash-flow sheet in the Valley of Ten Thousand Smokes (VTTS), Alaska, 18O/16O studies indicate that fumarolic activity produced a very wide range of δ18O values (?0.1 to +12.6; n=32) in the groundmass adjacent to fossil fissure fumaroles. This contrasts sharply with the uniformity of δ18O in the groundmass away from fumarolic conduits (δ18O=+5.9 to +7.1; n=7) and in all of the feldspar phenocrysts (δ18O=+6.11 to +7.5 1 for 11 samples from this study and Hildreth 1987), independent of whether these were collected from fossil fumaroles or from unaltered tuff. Only one sample contained feldspars that were even slightly 18O-enriched relative to the others (cloudy plagioclase δ18O=+8.45). and this sample also contained the most 180-enriched groundmass of any of those analyzed (δ18O=+12.6). This preservation of primary magmatic δ18O values in the VTTS feldspar phenocrysts is clearly a consequence of the extremely short time span (i.e., 1912 to ≈1923) of vigorous, high-temperature, fumarolic activity in the 1912 ash-flow sheet. These 18O/l6O systematica are strikingly similar to those discovered in the 2.8-Ma intracaldera Chegem Tuff (Gazis et al. 1996) and in the fossil fumaroles in the outflow sheet of the 0.76 Ma Bishop Tuff (Holt and Taylor 1998), thus confirming that a similar type of fumarolic meteoric-hydro-thermal activity occurred above the zone of intense welding in all three of these ash-flow tuffs. This is particularly important, because it provides a direct linkage between the older tuffs and the actual observations at the VTTS of steam chemistry, water/rock interaction, circulation geometry, flow velocities, and fumarolic temperatures (up to 645°C). The 18O/l6O effects in the VTTS can all be explained in terms of a two-stage history: (a) an early, 10- to 15-year-long, high-temperature (τ;450°C), fumarolic 18O-depletion event (groundmass δ18O=?0.1 to +4.8); and (b) a subsequent, much longer-lived, low-temperature (<150°C), 18O-enrichment episode (groundmass as high as δ18O=+12.6). Steam in these low-temperature fumaroles probably passed through various parts of the same hydrothermal system associated with the earlier, higher-temperature, fumarolic activity, and a weakened form of this low-temperature hydrothermal circulation continues to the present day (Keith et al. 1992; Lowell and Keith 1991). This low-temperature 18O/16O exchange probably occurred in combination with mineralogical alteration of both the groundmass and the calcium-rich portions of feldspar phenocrysts during the waning (<150°C) stages of fumarolic activity (Spilde et al. 1993). The slight 18O enrichment of apparently pristine, transparent feldspar phenocrysts (δ18O=+7.51) in one of the 18O-depleted, meteoric-hydrothermally altered fumarolic samples (whole-rock δ18O=+4.8) probably indicates that this sample was incipiently altered at low temperatures as fumarolic activity waned, and thus may have had a whole-rock δ18O value much lower than +4.87‰ prior to 1923.  相似文献   

5.
18O/16O data from the 200-m-thick, 0.76 Ma Bishop Tuff outflow sheet provide evidence for a vigorous, short-lived (≈10 years), high-temperature, fumarolic meteoric–hydrothermal event. This is proved by: (1) the juxtaposition in the upper, partially welded Bishop Tuff of low-18O groundmass/glass (δ18O=−5 to +3) with coexisting quartz and feldspar phenocrysts having magmatic δ18O values (+8.7±0.3; +7.5±0.3); and (2) the fact that these kinds of 18O/16O signatures correlate very well with morphological features and mapped zones of fumarolic activity. Profiles of δ18O with depth in the Bishop Tuff within the fumarole area define a 40- to 50-m-thick, low-18O, stratigraphic zone that is sandwiched between the essentially unwelded near-surface portion of the tuff and an underlying, densely welded black tuff that displays magmatic 18O/16O values. Shallow-dipping columnar joints and other fumarolic features (i.e., subhorizontal tubular conduits and steep fissures) correlate very well with these pervasively devitrified, low-18O zones. The base of the low-18O zone is extremely sharp (3‰ per meter) and is located directly above the transition from partially welded tuff to densely welded black tuff. The observed average whole-rock 18O-depletions within this low-18O zone are about 6–7‰, requiring meteoric water/rock ratios in excess of 0.24 in mass units. Rainfall on the surface of the tuff would not have been high enough to supply this much H2O in the short lifetime of fumarolic activity, suggesting that some recharge must have been from groundwater flow through the upper part of the tuff, above the sloping (1°–5°) top of the impermeable lower zone. This is compatible with the observation that the fumarolic areas roughly correlate with the preeruptive regional drainage pattern. Some of this recharge may in part have been from the lake that filled Long Valley caldera, which was dammed by the Bishop Tuff up to the level of this boundary between the partially and densely welded zones (≈7000 ft, the elevation of the highest Long Valley Lake shorelines). Gazis et al. had previously shown that the 2.8-Ma intracaldera Chegem Tuff from the Caucasus Mountains exhibits exactly the same kind of 18O-signature that we have correlated with fossil fumaroles in the Bishop Tuff outflow sheet. Although not recognized as such by McConnell et al.; 18O/16O data from drill-hole samples from the intracaldera Bishop Tuff in Long Valley also display this characteristic 18O signature (i.e., analogous δ18O-depth profiles, as well as low-18O groundmass coexisting with high-18O feldspar phenocrysts). This fumarolic 18O/16O signature is observed to much greater depths (≈650–750 m) in the intracaldera tuffs (≈1500 m thick) than it is in the ≈200-m-thick Bishop Tuff outflow sheet (≈80 m depth).  相似文献   

6.
Phosphorites from sedimentary sequences ranging in age from Archaean to Recent were analysed for δ18O in both the PO418Op) and CO318Oc) in the apatite lattice. The oxygen isotope record is considerably better preserved in phosphates than in either carbonates or cherts. The use of the Longinelli and Nuti [8] temperature equation yields temperatures for Recent phosphorites that are in good agreement with those measured in the field. The δ18Op values of ancient phosphorites decrease with increasing age. These changes with time are not likely to be due to post-depositional exchange. Changes in δ18O values of seawater and variations of temperature with time can account for the δ18Op time trend, but the latter explanation is preferred. In Ancient phosphorites δ18Oc in structurally bound carbonate in apatite is not a reliable geochemical indicator.  相似文献   

7.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

8.
The cherts formed from sodium silicate precursors in East African saline, alkaline lakes have δ18O values ranging from 31.1 to 44.1. The δ18O values correlate in general with lake salinities as inferred from geologic evidence, indicating that most chert was formed from its precursor in contact with lake water trapped at the time of deposition. A few of the analyzed cherts probably formed in contact with dilute meteoric water. From the widely varying δ18O values we conclude that precursors were transformed to chert in fluids of widely varying salinity and aNa+/aH+ ratio.  相似文献   

9.
Increases in calcite deposition rates combined with decreases in δ13C and δ18O in three modern stalagmites from Brown's Folly Mine, Wiltshire, England, are correlative with a well-documented re-vegetation above the mine. Increased soil PCO2 resulted in greater amounts of dissolved CaCO3 in the drip waters, which consequently increased annual calcite deposition rates. The absence of deposition prior to 1916 (28 years after the mine was closed) indicates that vegetation had not yet sufficiently developed to allow higher PCO2 values to form in the soil. Lower δ13C values through time may reflect the increased input of isotopically light biogenic carbon to the total dissolved inorganic carbon (DIC). δ18O decreased synchronously with δ13C, reflecting the increased importance of isotopically light winter recharge due to greater biomass-induced summer evapotranspiration. This is the first empirical demonstration that vegetation density can control stalagmite growth rates, δ13C, and δ18O, contributing critical insights into the interpretation of these climate proxies in ancient stalagmites.  相似文献   

10.
We report a quantitative analysis of regional differences in the the oxygen isotope composition of river water and precipitation across the USA because data are now available to undertake a more geographically and temporally extensive analysis than was formerly possible. Maps of modern, mean annual δ18O values for both precipitation (δ18OPPT) and river water (δ18ORIV) across the 48 contiguous states of the USA have been generated using latitude and elevation as the primary predictors of stable isotope composition while also incorporating regional and local deviations based on available isotopic data. The difference between these two maps was calculated to determine regions where δ18ORIV is significantly offset from local δ18OPPT. Additional maps depicting seasonal and extreme values for δ18ORIV and δ18OPPT were also constructed. This exercise confirms the presence of regions characterized by differences in δ18ORIV and δ18OPPT and specifically identifies the magnitude and regional extent of these offsets. In particular, the Great Plains has δ18ORIV values that are more positive than precipitation, while much of the western USA is characterized by significantly lower δ18ORIV values in comparison with local δ18OPPT. The most salient feature that emerged from this comparison is the ‘catchment effect’ for the rivers. Because river water is largely derived from precipitation that fell upstream of the sample locality (i.e. at higher elevations) δ18ORIV values are often lower than local δ18OPPT values, particularly in catchments with high‐elevation gradients. Seasonal patterns in the isotopic data substantiate the generally accepted notion that amplitudes of δ18O variation are greatly dampened in river water relative to those of local precipitation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

This study aims to differentiate the potential recharge areas and flow mechanisms in the North-eastern Basin, Palestine. The results differentiate the recharge into three main groups. The first is related to springs and some of the deep wells close to the Anabta Anticline, through the Upper Aquifer (Turonian) formation, with depleted δ18O and δ2H. The second is through the Upper Cenomanian formation surrounding the Rujeib Monocline in the southeast, where the lineament of the Faria Fault plays an important role, with relatively enriched δ13CDIC values of about ?4‰ (VPDB). The third is the Jenin Sub-series, which shows higher δ13CDIC values, with enriched δ18O and δ2H and more saline content. The deep wells from the Nablus area in the south of the basin indicate low δ13CDIC values due to their proximity to freshwater infiltrating faults. The deep wells located to the northwest of the basin have δ13CDIC values from ?8 to ?9‰ (VPDB), with enriched δ18O signatures, indicating slow recharge through thick soil.  相似文献   

12.
Characterization of stable isotope compositions (δ2H and δ18O) of surface water and groundwater in a catchment is critical for refining moisture sources and establishing modern isotope–elevation relationships for paleoelevation reconstructions. There is no consensus on the moisture sources of precipitation in the Yellow River source region during summer season. This study presents δ2H and δ18O data from 111 water samples collected from tributaries, mainstream, lakes, and groundwater across the Yellow River source region during summertime. Measured δ18O values of the tributaries range from ?13.5‰ to ?5.8‰ with an average of ?11.0‰. Measured δ18O values of the groundwater samples range from ?12.7‰ to ?10.5‰ with an average of ?11.9‰. The δ18O data of tributary waters display a northward increase of 1.66‰ per degree latitude. The δ18O data and d‐excess values imply that moisture sources of the Yellow River source region during summertime are mainly from the mixing of the Indian Summer Monsoon and the Westerlies, local water recycling, and subcloud evaporation. Analysis of tributary δ18O data from the Yellow River source region and streamwater and precipitation δ18O data from its surrounding areas leads to a best‐fit second‐order polynomial relationship between δ18O and elevation over a 4,600 m elevation range. A δ18O elevation gradient of ?1.6‰/km is also established using these data, and the gradient is in consistence with the δ18O elevation gradient of north and eastern plateau. Such relationships can be used for paleoelevation reconstructions in the Yellow River source region.  相似文献   

13.
The primary δD values of the biotites and hornblendes in granitic batholiths are remarkably constant at about ?50 to ?85, identical to the values in regional metamorphic rocks, marine sediments and greenstones, and most weathering products in temperate climates. Therefore the primary water in these igneous rocks is probably not “juvenile”, but is ultimately derived by dehydration and/or partial melting of the lower crust or subducted lithosphere. Most granitic rocks have δ18O = +7.0 to +10.0, probably indicating significant involvement of high-18O metasedimentary or altered volcanic rocks in the melting process; such an origin is demanded for many other granodiorites and tonalites that have δ18O = +10 to +13. Gigantic meteoric-hydrothermal convective circulation systems were established in the epizonal portions of all batholiths, locally producing very low δ18O values (particularly in feldspars) during subsolidus exchange. Some granitic plutons in such environments also were emplaced as low-18O magmas probably formed by melting or assimilation of hydrothermally altered roof rocks. However, the water/rock ratios were typically low enough that over wide areas the only evidence for meteoric water exchange in the batholiths is given by low D/H ratios (δD as low as ?180); for example, because of latitudinal isotopic variations in meteoric waters, as one moves north through the Cordilleran batholiths of western North America an increasingly higher proportion of the granitic rocks have δD values lower than ?120. The lowering of δD values commonly correlates with re-setting of K-Ar ages, and in the Idaho batholith two broad zones (10,000 km2) can be defined where δD biotite <?100 and K-Ar “ages” have all been re-set to values less than 60 m.y., suggesting that the Ar loss was caused by the meteoric-hydrothermal circulation systems. In certain Precambrian batholiths, a much different type of very low-temperature, regional alteration by surface-derived waters took place over an extended period long after emplacement, producing “brick-red” feldspars and markedly discordant Rb-Sr isochron “ages”.  相似文献   

14.
The D/H and18O/16O ratios of fumarole condensates from White Island, an andesite volcano in the Bay of Plenty, have been measured during the period 1965 to 1969 to determine the origin of the water and the changes which occur as the volcanic activity changes. The D/H and18O/16O ratios of all of the samples were correlated with a slope of ?2. The δ18O values were proportional to the logarithm of the chloride concentration but with distinctly different relationships between the period from 1965 to 1967, and the period of tephra eruptions in 1968. In the latter period the chloride contents were close to that of sea water while in the former quieter period the contents were lower. The δD values follow a similar pattern but with a poorer correlation, indicating that a more variable process is controlling the deuterium results. Possible hydrothermal models are: mixing of near surface water and magmatic water; progressive leaching of chloride from underground rocks and exchange of isotopes (Craig, 1966); and lastly, equilibrium evaporation at about 255°C of either sea water or local surface water. The first of these models is considered most unlikely because of the incompatible logarithmic relationship between the chloride content and the oxygen isotope results. The second model has some merit, but the available evidence favours the last of the three models in which the 1965–67 samples derive from surface water or vapour from a boiling chloride water aquifer of sea water origin and the 1968 samples derive from the boiling chloride water, because of disturbance of the system during the tephra eruptions.  相似文献   

15.
The direct H2Oliquid–H2Ovapour equilibration method utilizing laser spectroscopy (DVE-LS) is a way to measure soil pore water stable isotopes. Various equilibration times and calibration methods have been used in DVE-LS. Yet little is known about their effects on the accuracy of the obtained isotope values. The objective of this study was to evaluate how equilibration time and calibration methods affect the accuracy of DVE-LS. We did both spiking and field soil experiments. For the spiking experiment, we applied DVE-LS to four soils of different textures, each of which was subjected to five water contents and six equilibration times. For the field soil experiment, we applied three calibration methods for DVE-LS to two field soil profiles, and the results were compared with cryogenic vacuum distillation (CVD)-LS. Results showed that DVE-LS demonstrated higher δ2H and δ18O as equilibration time increased, but 12 to 24 hr could be used as optimal equilibration time. For field soil samples, DVE-LS with liquid waters as standards led to significantly higher δ2H and δ18O than CVD-LS, with root mean square error (RMSE) of 8.06‰ for δ2H and 0.98‰ for δ18O. Calibration with soil texture reduced RMSE to 3.53‰ and 0.72‰ for δ2H and δ18O, respectively. Further, calibration with both soil texture and water content decreased RMSE to 3.10‰ for δ2H and 0.73‰ for δ18O. Our findings conclude that the calibration method applied may affect the measured soil water isotope values from DVE-LS.  相似文献   

16.
Little is known about the spatial and temporal variability of the stable isotopic composition of precipitation in the North Atlantic and its relationship to the North Atlantic Oscillation (NAO) and anthropogenic climate change. The islands of the Azores archipelago are uniquely positioned in the middle of the North Atlantic Ocean to address this knowledge gap. A survey of spatial and temporal variability of the stable isotope composition of precipitation in Azores is discussed using newly presented analyses along with Global Network of Isotopes in Precipitation data. The collected precipitation samples yield a new local meteoric water line (δ2H = 7.1 * δ18O + 8.46) for the Azores region and the North Atlantic Ocean. The annual isotopic mean of precipitation shows a small range for the unweighted and precipitation mass‐weighted δ18O‐H2O values. Results show an inverse relation between the monthly δ18O‐H2O and the amount of precipitation, which increases in elevation and into the interior of the island. Higher amounts of precipitation (from convective storm systems) do not correspond to the most depleted values of stable isotopes in precipitation. Precipitation shows an orographic effect with depleted δ18O‐H2O values related to the Rayleigh effect. Monthly δ18O‐H2O values for individual precipitation sampling stations show little relationship to air temperature. Results show a local source of moisture during the summer with the characteristics of the first vapour condensate. The stable isotope composition of precipitation is strongly correlated to the NAO index, and δ18O‐H2O values show a statistically significantly trend towards enrichment since 1962 coincident with the increased air temperature and relative humidity due to climate change. Results are in line with observations of increasing sea surface temperature and relative humidity.  相似文献   

17.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   

18.
Belemnite guards of Cretaceous and Jurassic age were found to contain varying amounts of quartz deposited both on the external surface and inside the rostrum. The oxygen isotopic composition of coexisting carbonate, quartz and phosphate from the same rostrum was measured according to well-established techniques. None of these compounds showed isotopic values in equilibrium with one another. Assuming δ18O values of the diagenetic water within the range of meteoric waters, the δ18O(SiO2) yield temperatures in agreement with the apparent secondary origin of this phase. The δ18O(CO32−) range, with a certain continuity, between −10.8 and +0.97 PDB-1 with most of the intermediate values being within the range of the carbonate isotopic values of Mesozoic fossils. The most positive isotopic results obtained from phosphate are close to +23/+24‰ (V-SMOW). They can hardly be related to a secondary origin of the phosphate, or to the presence of diagenetic effects, since these results are among the most positive ever measured on phosphate. As far as we know there is no widespread diagenetic process determining an 18O enrichment of phosphate. The very low concentration of phosphate did not allow the determination of its mineralogical composition. All the available δ18O(PO43−) values from belemnite and non-belemnite fossils of marine origin of Tertiary and Mesozoic age are reported along with the newly measured belemnites. The following conclusions may be drawn from the data reported: (1) the pristine oxygen isotope composition of fossil marine organisms (either carbonate or phosphate) may easily undergo fairly large changes because of oxygen isotope exchange processes with diagenetic water; this process is apparent even in the case of geologically recent fossils; (2) the δ18O(PO43−) of belemnite rostra seems to be, at least in the case of the most positive results, in isotopic equilibrium with environmental water because of the similarity between the results from Cretaceous belemnites and the results from Cretaceous and Lower Tertiary pelecypods and fish teeth; 3) if so, the only feasible interpretation that can be suggested for the 18O enriched data is the possibility of a relatively large variation of the oxygen isotopic composition of ocean paleowater from Jurassic to recent time.  相似文献   

19.
δ18O values for 87 chert samples from the 3.4-b.y.-old Onverwacht Group, South Africa, range from +9.4 to +22.1‰. δ-values for cherts representing early silicified carbonates and evaporites, and possible primary precipitates range from +16 to +22‰ and are distinctly richer in18O than silicified volcaniclastic debris and cherts of problematical origin. The lower δ-values for the latter two chert types are caused by isotopic impurities such as sericite and feldspar, and/or late silicification at elevated temperature during burial. Cherts with δ-values below +16‰ are thus not likely to yield geochemical data relevant to earth surface conditions.Fine-grained chert is less than 0.7‰ depleted in18O relative to coexisting coarse drusy quartz. Because coarse quartz preserves its isotopic composition with time, the maximum amount of post-depositional lowering of the δ-values of cherts by long-term isotopic exchange with meteoric groundwaters does not exceed 0.7‰ in 3.4 b.y. In response to metamorphism the δ-values of Onverwacht cherts appear to remain unchanged or to have increased by as much as 4‰. Neither metamorphism nor long-term isotopic exchange with groundwaters can explain why Onverwacht cherts are depleted in18O relative to their Phanerozoic counterparts.Meteoric waters with a δ18O range of at least 3‰ appear to have been involved in Onverwacht chert diagenesis. δ-values for possible primary cherts or cherts representing silicified carbonates and evaporites are compatible with the depositional and diagenetic environments deduced from field and petrographic evidence. Onverwacht cherts appear to have formed with δ-values at least 8‰ lower than Phanerozoic cherts.The new Onverwacht data combined with all published oxygen isotope data for cherts suggest a secular trend similar to that initially suggested by Perry (1967) in which younger cherts are progressively enriched in18O. However, Precambrian cherts appear to be richer in18O than Perry's original samples and can be reasonably interpreted in terms of declining climatic temperatures from ~70°C at 3.4 b.y. to present-day values, as initially suggested by Knauth and Epstein (1976). This surface temperature history is compatible with existing geological, geochemical, and paleontological evidence.  相似文献   

20.
3He/4He ratios have been obtained for basaltic, intermediate and acid volcanic glasses from Iceland. Basaltic glasses exhibit a wide range of 3He/4He ratios (4 < R/Ra < 24), which is consistent with the previously recorded range for Icelandic geothermal systems. In contrast the glasses with intermediate and acid compositions have 3He/4He values close to the atmospheric value (Ra) with the exception of a 13-Ma sample which has R/Ra= 0.07. 87Sr/86Sr, 143Nd/144Nd ratios and δ18O values are reported for the same samples.3He/4He does not correlate with either 87Sr/86Sr or 143Nd/144Nd ratio and radiogenic components of He, Sr and Nd have apparently been decoupled. Interaction of Icelandic magmas with hydrothermally altered and older Icelandic crust is the preferred explanation for variable and often low δ18O values. It is suggested that primary 3He/4He ratios may have been modified by incorporation of radiogenic helium developed within the Icelandic crust to impose a larger range of 3He/4He ratios on the erupted products than was actually inherited from the mantle beneath Iceland. Intermediate and acid samples have all been severely contaminated by atmospheric helium, most probably at very shallow levels within the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号