首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed alternating field demagnetisation of Upper Llandovery volcanics of the Mendip Hills and Gloucestershire has isolated remanence directions interpreted as primary from each of five sites. Well-defined high-coercivity secondary magnetisation is present in six samples of one site and low-coercivity secondary remanence is present in all samples from another site; the former component was apparently acquired in Permo-Triassic times. Primary directions of magnetisation show marked improvement in precision after correction for penecontemporaneous folding, and show a late Llandovery reversal in the sense R → N.The group mean directions of magnetisation isD = 243.5°,I = 47.5° (precision parameterk = 29). Petrographic examination confirms observations from magnetic properties that relict titanomagnetite (oxidation classes 3 to 5) is the remanence carrier in most samples. Hematite, probably mostly late magmatic in origin, is widely developed in all samples, but only the principal remanence carrier where it has thoroughly replaced the titanomagnetite. Low-coercivity remanence is apparently caused by weathering effects but there is no clear visible cause for secondary high-coercivity remanence carried by some samples.The mean virtual geomagnetic pole position is close to Upper Silurian/Lower Devonian pole positions from other parts of Britain and defines a minimum apparent polar shift of 60° between late Ordovician and Upper Llandovery times. Reference to absolute age dates suggests that this shift took place between ca. 447 and 434 m.y. followed by slight polar movement between ca. 434 and 394 m.y.  相似文献   

2.
Summary A reconnaissance paleomagnetic study of Hispaniola shows that three igneous units in the Dominican Republic possess meaningful directions of magnetism. A Late Cretaceous tonalite, an Eocene pyroxene diorite and a Miocene andesite porphyry have been investigated. The rock material studied is fresh, and has not been affected by secondary oxidation except in the case of the andesite which is occasionally weathered and reveals some hydrothermal alteration. Alternating field and thermal demagnetization result in removal of viscous remanence in some samples, while others reveal a good stability of NRM and little change in direction. The results disclose directions of magnetization substantially different from that of the present earth's field in Hispaniola and from those obtained from contemporaneous rocks of North America. They yield paleomagnetic poles at 23.1° N, 144.9° W for the Cretaceous tonalite and at 17.4° N, 138.0° W for the Eocene diorite, the positions of which are not significantly different from each other, suggesting no change of geomagnetic field direction during the two epochs. These poles have generally similar positions to those obtained from Late Cretaceous rocks on Jamaica and Puerto Rico. The Miocene data fall into two groups, one having a direction corresponding to a pole closely coinciding with the Miocene North American pole and the other giving a paleomagnetic pole at 68.3° N, 151.9° W coinciding with the Miocene pole for Jamaica. Paleotectonic interpretation of the results suggests that like other Greater Antilles, Hispaniola has been subject to large anticlockwise rotation since Late Cretaceous.  相似文献   

3.
The Sulitjelma Gabbro situated at 67.2°N, 15.4°E was intruded close to the Late Ordovician climax of regional metamorphism in the northern Scandinavian Caledonides. Magnetic properties have been examined from samples collected at seven localities in the south western part of this body. Total NRM directions show a tendency to be aligned near the present earth's magnetic field direction in this region. Stability to a.f. demagnetisation is low and commensurate with low Koenigsberger ratios (0.001–0.16) and the presence of unoxidised magnetite as the principal remanence carrier. After cleaning the site mean directions no longer show an alignment near the present earth's field and of six statistically significant sites three are approximately reversed with respect to remainder. The combined mean direction after cleaning isD = 195°,I = 15° (precision parameterk = 6) and the derived virtual geomagnetic pole is at 0°E, 14°S (α95 = 23°). This pole is close to poles of comparable age from the British Isles and suggests that Britain and Norway were part of the same crustal plate in Ordovician times. Discrepancies between Siluro-Devonian results from the two regions may be due to inadequate age coverage of present results.  相似文献   

4.
Research into the properties of past geomagnetic fields (paleo-geomagnetism) has been carried out worldwide for over half a century. This research utilizes rocks which are to a varying degree inadequate for that purpose, and evaluation of the results is therefore not always on firm ground. One resource which can be utilized to constrain several aspects of the interpretation of other paleo-geomagnetic data, consists of stable primary remanence vectors in large homogeneous collections of dated fresh lava flows. We outline how the available remanence data from several thousand lavas in Iceland may be analysed in a semi-quantitative way to test some of current results, methodology and concepts of paleo-geomagnetism. Among topics where such analysis provides new insights, are the geomagnetic polarity time scale, the frequency distribution of virtual geomagnetic poles in latitude and longitude, and the relative intensity of the magnetic field as a function of virtual pole latitude. Comparison of the scatter in remanence intensities and in absolute paleointensity determinations on Icelandic lavas indicates, along with other evidence, that quality criteria for the latter are in need of revising. It is also confirmed here that long-term changes have occurred in the amplitude of the geomagnetic secular variation; they should be taken into account in studies on other properties of the paleo-geomagnetic field.  相似文献   

5.
Thermal demagnetization of red and drab sandstones from the St. Bees Sandstone shows a wide range of directional stability. After the removal of a metastable secondary magnetization at temperatures up to 300°C red sandstones may show stable or unstable magnetization. Experiments indicate that both the stable and unstable magnetization is carried by coarse haematite particles (specularite).Drab sandstones, which have been subject to reduction and dissolution of haematite are generally unstable but specimens with a stable NRM occur and this must be carried by specularite because the pigment has been removed from these specimens.The stable magnetization is believed to have developed during deposition and early diagenesis by the oxidation of detrital iron oxides. Pole positions correspond to known Triassic poles and there are abundant normal and reversed zones typical of the Lower Triassic.The unstable magnetization of the red sandstones is apparently due to the development of authigenic overgrowths of haematite on the detrital specularites. This phase of authigenesis may have taken place over a long time, and after significant changes in the ambient geomagnetic field resulting in complex magnetizations in individual grains and hence whole rocks.  相似文献   

6.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

7.
Directional samples were taken to study rock magnetism and palaeomagnetic records from the Dong- sheng profile, which is 5 m thick and on the northwest edge of the Bose Basin. Mineralogy and rock magnetism of typical samples indicate that coarse granular titanomagnetite, and fine-grained hematite, superparamagnetic maghemite formed by pedogenesis are in the sediment, which has undergone many transformative processes during different stages of pedogenesis. Parallel samples were taken for thermal demagnetization (TH) (0 to 680℃) and alternating field (AF) demagnetization (0 to 80 mT) respectively. Experimental results of these two kinds of demagnetization illustrate that there are two or more magnetic components in the samples. Intensity of NRM decreases by almost 60% to 90% rapidly when the temperature ranges from 100℃ to 350℃, with a steady magnetic component. It is impossible to analyze the magnetic components at high temperature because those fluctuate widely when the temperature is higher than 400℃. Steady magnetic components from 100℃ to 350℃ indicate that the remanence was mainly carried by fine-grained hematite formed by pedogenesis, reflecting a change in the geomagnetic field while the magnetite was being oxidized into hematite by chemical weathering after deposition. The formative age of the sediments cannot be obtained by magnetic methods in this profile.  相似文献   

8.

Paleomagnetic samples were collected from four localities located in the southern rim of the Tarim basin. The samples were taken from volcanic rocks erupted between Jurassic and Quaternary. Detailed analysis of all samples has been carried out with progressive thermal demagnetization. A characteristic remanence (ChRM) with higher unblocking temperature has been isolated from all samples. The pole position from the middle Jurassic is at 52.5°N, 187.9°E(dp = 3.7°,dm =6.5°); the directions of the ChRM of Cretaceous correspond to a paleopole at 69.7°N, 211.6°E (dp = 9.8°,dm = 15.9°); the Quaternary pole from the Pulu site is at 79. 9°N, 183.1°E(dp = 1.6°.dm =2.4°). On the basis of these new paleomagnetic data, tectonic evolution of Tarim block is presented.

  相似文献   

9.
One of the reasons for performing paleomagnetic studies is to determine whether the geomagnetic field remains dipolar during a polarity transition. Data on 23 field reversals of Recent, Tertiary and Upper Mesozoic age are examined with regard to the longitudinal and latitudinal distribution of paleomagnetic poles during a polarity change. Both frequency distributions of the transitional pole positions are not random. The results suggest that some field reversals are characterized by the rotation of the dipole axis in the meridional plane and show that two preferential meridional bands of polarity transitions exist centered on planes through 40°E–140°W and 120°E–60°W respectively. The latitudinal distribution of transitional paleopoles shows that there is a decrease in the number of observed poles with decreasing latitude. This is interpreted as the result of an acceleration in the motion of the dipole axis when it approaches the equator. Comparison of transitional velocities and paleointensity magnitudes reveals that the dipole moment is very weak only for a short part of the transitional period when the paleopole position lies within the latitudes of 10°N and 10°S. The overall conclusion is that the geomagnetic field retains its dipolar character during polarity changes.  相似文献   

10.
The Svecofennian mobile zone occupies the bulk of the Fennoscandian shield and represents terrain subjected to profound tectonic activity and granite intrusion at ~1800 My. This study covers the palaeomagnetism of basic rocks within this belt in Sweden between 65.5 and 67.5°N (gabbros and diorites of Kallax, Niemisel, Sangis, Stora Lulevatten and the Gällivare, Jokkmokk and Voullerim regions) magnetised during uplift and cooling of this belt at ~1750-1550 My. AF and thermal demagnetisation define a consistent sequence of high to low blocking-temperature components identifying a migration of the geomagnetic field during part of this interval. Together with the Rådmansö gabbro-diorite of central-east Sweden (palaeomagnetic pole 201°E, 36°N) these components yield a comparable sequence of palaeopoles to those derived from uplift magnetisations of the contemporaneous Svecokarelian terrain of Finland. The post-tectonic, Uppsala metabasite suite possesses a magnetite-held (“A”) remanence comparable to Svecofennian uplift magnetisations from elsewhere; within the aureole of the Almunge alkaline complex this has been largely displaced by a low blocking temperature (“B”) remanence, possibly related to a late stage in the Svecofennian uplift cycle. The Hälleforsnäs giant dyke possesses a magnetite-held remanence attributed to initial cooling at 1518 My (palaeomagnetic pole 167°E, 27°N) and at least two high blocking-temperature components. One of these is correlated with the ~1000-800 My Sveconorwegian mobile activity of southwest Sweden; this latter component is represented as the univectorial remanence in dolerite dykes of this age, and sporadically as a secondary component in the adjacent Svecofennian terrain.The results are compiled with other palaeomagnetic poles from the Fennoscandian shield to derive a generalised apparent polar wandering path for the interval ~1750-1550 My. They define segments of a large loop which agrees closely with uplift magnetisations from the contemporaneous Hudsonian mobile terrain of the Laurentian shield on a single reconstruction derived from Upper Proterozoic (1450-1200 My) palaeomagnetic data. The two shields thus appear to have formed an integral continental unit during the interval 1750-1200 My. A geological reconstruction of the Siberian and Laurentian shields is also tested and found to yield general agreement with the palaeomagnetic evidence. The major geological implications of the collective reconstruction are an alignment of major tectonic trends and a gradual restriction of anorthosite-Rapakivi magmatism between the termination of the ~1800 and ~1100 My mobile episodes.  相似文献   

11.
Paleomagnetic samples were collected from four localities located in the southern rim of the Tarim basin. The samples were taken from volcanic rocks erupted between Jurassic and Quaternary. Detailed analysis of all samples has been carried out with progressive thermal demagnetization. A characteristic remanence (ChRM) with higher unblocking temperature has been isolated from all samples. The pole position from the middle Jurassic is at 52.5°N, 187.9°E(dp = 3.7°,dm =6.5°); the directions of the ChRM of Cretaceous correspond to a paleopole at 69.7°N, 211.6°E (dp = 9.8°,dm = 15.9°); the Quaternary pole from the Pulu site is at 79. 9°N, 183.1°E(dp = 1.6°.dm =2.4°). On the basis of these new paleomagnetic data, tectonic evolution of Tarim block is presented.  相似文献   

12.
Four mafic and two dioritic igneous bodies intruding along the flanks of the Charlotte belt, within the King's Mountain belt and near the Slate-Kiokee-Charlotte belt boundaries in the South Carolina Piedmont, were studied paleomagnetically. The results suggest that these mafic rocks with a single characteristic magnetization are broadly contemporaneous. A mean paleomagnetic pole position of 38.9°N 120.8°E has been calculated for the six bodies. This pole position falls near the 300 Ma old point of Irving's apparent polar wander path (APWP) for North America. The α95 circle of confidence (10.2°) includes points on the APWP between 250–360 Ma. Anomalously old KAr apparent ages, greater than one billion years, are suggestive of excess 40Ar contamination for the mafic Buffalo pluton, whereas apparent ages in the range of 360–395 Ma old are interpreted as a maximum age for the other bodies, due to the possibility of small amounts of excess 40Ar being present. A 10° westerly tilt correction suggested by Dooley and Smith for early Mesozoic diabase brings the mafic pole position of this study to more nearly coincide with the 350 Ma virtual geomagnetic position of Irving's curve, but the test is inconclusive, awaiting better definition of radiometric ages. The simplest interpretation of the data is that the mafic pole position reflects the direction of the geomagnetic field in late Devonian Carboniferous times. The similarity of this pole position with the points on the APWP for North America provides little evidence for displaced terrains and, with the precision of this pole position, horizontal displacements on the order of that suggested by the Consortium for Continental Reflection Profile (COCORP) results, or by subsequent studies, are not detectable. This and other pole positions from granitic rocks in the southern Appalachian orogen suggest that if displaced terrains exist, the evidence must be found in older rocks, or in other geologic belts.  相似文献   

13.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

14.
Summary Using palaeomagnetic investigations of sedimentary rocks and particularly lake sediments, changes of the geomagnetic field and geomagnetic poles were determined over a period of the last 40 000 years. The correlations between geomagnetic, climatic and meteorological phenomena were investigated with the object of demonstrating the function of the geomagnetic pole and changes in its positions in forming the climate and weather. A tentative model has been proposed to enable the causes of the generation of glacial and interglacial periods, as well as the causes effecting changes of weather to be explained. The possibilities of man-made meliorations of the climate in certain regions are also discussed.Presented at the XVI Gen.Assembly IUGG, Grenoble 1975.  相似文献   

15.
The Builth Volcanic Series of Llanvirnian age in Llanelwedd Quarries, mid-Wales, carries three components of natural remanent magnetisation. Component P, regarded as primary, is a thermochemical remanence directed at D = 181.7°, I = +54.5°, α95 = 4.4° relative to bedding. Component S is a secondary component with in situ D = 178.7°, I = ?6.7°, α95 = 5.4° and is believed to be a low-temperature chemical remanence (CRM) of Permo-Carboniferous age. Component R is directed close to the present geomagnetic field and is believed to be a recent viscous remanence (VRM).The results are of interest for three reasons. First, they are an unusually good example of multi-component NRM analysis, the three components being so clearly discriminated by thermal demagnetisation because they have almost completely separate blocking temperature ranges. Second, they provide evidence of a Permo-Carboniferous event (possibly a mild thermal or hydrothermal pulse promoting CRM acquisition) some 40 km north of the Hercynian orogenic front. Third, they illustrate very clearly the importance of detailed demagnetisation: this work revises the pole position for these rocks by ~ 10° and removes an obstacle to the palaeomagnetic recognition of the ~ 1000 km wide Iapetus Ocean cutting Britain in Ordovician time.  相似文献   

16.
We report paleomagnetic results from oriented drill core samples collected at 10 sites (80 samples) from the Covey Hill and 19 sites (96 samples) from the overlying, fossiliferous Cha?teauguay Formations of the gently dipping Late Cambrian Potsdam Group sandstones exposed in the St. Lawrence Lowlands of Quebec. Stepwise thermal demagnetization analyses ave revealed the presence of two predominant groups of coherent magnetizations C-1 and C-2, after simple correction for bedding tilt. The C-1 group magnetization is a stable direction (D=332°, I=+18°) with unblocking temperatures (TUB) between 550 and 650°C, present in the older Covey Hill Formation; this direction is probably a chemical remanence acquired during the Covey Hill diagenesis and carried predominantly by hematite. The C-2 group magnetization (D=322°, I=+9°) is present at 13 sites of the younger Cha?teauguay Formation; this is probably carried by magnetite and represents a penecontemporaneous, depositional DRM, characterized by TUB spectra 400–550°C. We believe that C-2 is relatively younger than C-1 based on a combination of arguments such as the presence of opposite polarities, internal consistency, similarity and common occurrence of C-1 and C-2 respectively in the Covey Hill and Cha?teauguay members. The corresponding paleomagnetic poles C-1 (46°N, 149°E; dp, dm=3°, 5°) and C-2 (37°N, 156°E; dp, dm=2°, 5°) are not significantly different from most of the other Late Cambrian (Dresbachian-Franconian) poles derived from sediments exposed in the southern region (Texas) of the North American craton which are also believed to have been deposited during Croixian Sauk sea transgression similar to the Potsdam sandstones. Although adequate faunal control is lacking (in particular for the Covey Hill Formation), this comparison with the Cratonic poles suggests a Late Cambrian age to the Potsdam poles. The agreement between the results also gives the evidence for internal consistency of cratonic poles at least for Late Cambrian.The incoherent C-3 group remanence (D=250°, I=?15°) is commonly present at 7 sites in both the formations; this may not correspond to a reliable paleomagnetic signal. The other remanence C-4 (D=180°, I=+10°) is found only at 3 sites located in the uppermost stratigraphic levels of the Cha?teauguay Formation; the corresponding paleomagnetic pole (40°N, 107°E) does not differ significantly from the Ordovician and some Late Cambrian poles. The present data are insufficient to resolve a problem in apparent polar wander for Middle and Late Cambrian time posed by the existence of high-latitude poles for some strata of Middle Cambrian age and low-latitude poles for some strata of Late Cambrian age.  相似文献   

17.
A new analysis of palaeomagnetic data for igneous rocks from Deception Island, 25 de Mayo Island (King George Island) and Cape Spring, are given.K-Ar age determinations indicate that most of the igneous samples from 25 de Mayo Island included in the palaeomagnetic study are of Late Mesozoic/Early Tertiary age. The significance of these palaeomagnetic-radiometric data on the hypothesis of oroclinal bending of the Antarctic Peninsula and on the apparent polar movement of Antarctica is discussed.The positions of palaeomagnetic poles for the Andean igneous complex indicate that there has not been any apparent post-Late Cretaceous/Early Tertiary oroclinal bending in the Antarctic Peninsula from 74°S to 62°S.A comparison of the positions of palaeomagnetic poles for Antarctica and Australia suggests that the direction of apparent polar movement relative to Antarctica reversed after the Miocene.  相似文献   

18.
We present a detailed rock-magnetic and paleomagnetic survey from Autlan volcanic succession in western Mexico. The principal aim of this study is to extend paleomagnetic data from Autlan lavas in order to confirm vertical-axis rotation observed in reconnaissance study and to evaluate long-term variation of the geomagnetic field strength based on existing and global data. The mean inclination (44.7°) is in agreement with the expected inclination for 60 and 70 Ma, as derived from available reference poles for the North American craton. The declination (333.6°), however, is significantly different from those expected, which suggests a statistically significant counterclockwise tectonic rotation ranging between 10° ± 6° and 14° ± 7°. As a measure of paleosecular variation (PSV), we obtained a geomagnetic field dispersion of 9.6° (upper and lower limits: 7.2°–11.9°) in perfect agreement with the previously published PSV compilation of selected Cretaceous data from lavas. The mean virtual dipole moments available for Autlan lavas are about 65% of the present geomagnetic axial dipole but are in reasonably good agreement with other comparable quality determinations between 5 and 90 Ma. This reinforces the hypothesis that low geomagnetic field strengths persisted for the entire Jurassic extending into the Upper Cretaceous.  相似文献   

19.
The Moshirabad pluton is located southwest of the Sanandaj–Sirjan Metamorphic Belt, Qorveh, western Iran. The pluton is composed of diorite, monzodiorite, quartz diorite, quartz monzodiorite, tonalite, granodiorite, granite, aplite, and pegmatite. In this study 31 samples from various rocks were chosen for whole‐rock analyses and 15 samples from different lithologies were chosen for mineral chemical studies. The compositions of minerals are used to describe the nature of magma and estimate the pressure and temperature at which the Moshirabad pluton was emplaced. Feldspar compositions are near the binary systems in which plagioclase compositions range from An5 to An53 and alkali‐feldspar compositions range from Or91 to Or97. Mafic minerals in the plutonic rocks are biotite and hornblende. Based on the composition of biotites and whole‐rock chemistry, the Moshirabad pluton formed from a calc‐alkaline magma. Amphiboles are calcic amphiboles (magnesio‐hornblende or edenite). Temperatures of crystallization, calculated with the hornblende–plagioclase thermometer, range 550–750°C. These temperatures indicate that plutonic rocks have undergone some retrogressive changes in their mineral compositions. Aluminum‐in‐hornblende geobarometry indicates that the Moshirabad pluton was emplaced at pressures of 2.3–6.0 kbar, equal to depths of 7–20 km, but with consideration of regional geology, lower pressures than the above pressure range are more probable. Alteration of amphiboles can be the reason for some overestimation of pressures.  相似文献   

20.
Middle-Upper Jurassic carbonates exposed in 7 separate fragments of three tectonic units were sampled in the Polish segment of the Pieniny Klippen Belt in 1981, before construction of the Niedzica-Czorsztyn dam. Demagnetization experiments performed about 20 years ago and analyzed lately with modern program package revealed the presence of Middle Miocene overprints acquired in the normal and reversed geomagnetic field, and pre-folding components of natural remanence acquired during the Middle-Upper Jurassic. A paleolatitude of 36N±7° was obtained for the studied area for this time on the basis of 3 normal and 1 reversed components. Three pre-folding pole positions are situated between pole positions of the normal and reversed Stable European Middle Jurassic field. The obtained paleomagnetic results imply several prefolding (pre-Upper Miocene) and postfolding (post-Upper Miocene) episodes of rotations of the studied fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号