首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tamarix elongata Ledeb is a desert shrub found in the desert region of Northwest China and is commonly cultivated as a sand‐holding plant in this region. To understand its water requirement and the effects of climate conditions on its growth, trunk xylem sap flows of irrigated 8‐year‐old Tamarix elongata Ledeb plants were monitored continuously with heat‐pulse sap flow meters for the entire season. Soil moisture contents at 0–300 cm layer depth were also measured with a tube type time domain reflectometry (Tube‐TDR). Meteorological factors, i.e. solar radiation, air temperature, relative humidity and wind speed were simultaneously monitored by an automatic weather station at the site. Daily and seasonal variations of the trunk sap fluxes and their correlations with the meteorological factors, reference evapotranspiration and soil moisture contents in the root‐zone were analysed. The results indicated that frost influenced the trunk sap flux greatly under irrigated conditions, although the flux generally fluctuated with the variation of environmental factors and showed a mean trunk sap flux of 4·18 l d?1. There was a significantly exponential relationship between sap flux and the reference value of crop evapotranspiration, with a correlation coefficient of R2 = 0·7172. The sap flux also had a significant correlation with the soil water contents at a depth of 150–300 cm from soil surface (R2 = 0·5014). The order of the main meteorological factors affecting the sap flux of Tamarix elongata Ledeb trees was solar radiation > air temperature > vapour pressure deficit > relative humidity > wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Artemisia ordosica is considered as an excellent sand‐fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10‐year‐old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water‐carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Water flow in the soil–root–stem system was studied in a flooded riparian hardwood forest in the upper Rhine floodplain. The study was undertaken to identify the vertical distribution of water uptake by trees in a system where the groundwater is at a depth of less than 1 m. The three dominant ligneous species (Quercus robur, Fraxinus excelsior and Populus alba) were investigated for root structure (vertical extension of root systems), leaf and soil water potential (Ψm), isotopic signal (18O) of soil water and xylem sap. The root density of oak and poplar was maximal at a depth of 20 to 60 cm, whereas the roots of the ash explored the surface horizon between 0 and 30 cm, which suggests a complementary tree root distribution in the hardwood forest. The flow density of oak and poplar was much lower than that of the ash. However, in the three cases the depth of soil explored by the roots reached 1·2 m, i.e. just above a bed of gravel. The oak roots had a large lateral distribution up to a distance of 15 m from the trunk. The water potential of the soil measured at 1 m from the trunk showed a zone of strong water potential between 20 and 60 cm deep. The vertical profile of soil water content varied from 0·40 to 0·50 cm3 cm?3 close to the water table, and 0·20 to 0·30 cm3 cm?3 in the rooting zone. The isotopic signal of stem water was constant over the whole 24‐h cycle, which suggested that the uptake of water by trees occurred at a relatively constant depth. By comparing the isotopic composition of water between soil and plant, it was concluded that the water uptake occurred at a depth of 20 to 60 cm, which was in good agreement with the root and soil water potential distributions. The riparian forest therefore did not take water directly from the water table but from the unsaturated zone through the effect of capillarity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this study was to obtain the diurnal and seasonal changes of trunk sap flow in desert‐living Caragana korshinskii so as to understand its water requirement and ecological significance. The experiment was carried out with 15‐year old Caragana korshinskii grown in north‐west China under natural conditions. Heat pulse sensors based on the heat compensation theory were applied to measure the trunk sap flow, and soil moisture content at 0–300 cm layer, using tube‐type time domain reflectometry (Tube‐TDR). The solar radiation, the maximum and minimum air temperatures, relative humidity, wind speed, wind direction and precipitation were measured at a standard automatic weather station. The diurnal and seasonal variations of sap flow rate, the sap velocity at different positions in the trunk and the sap flow rate under different weather conditions were analysed. And the correlation between the sap flow rate and the meteorological factors was also analysed. Results showed that the trunk sap flow varied regularly in the diurnal term and the sap flow velocity decreased with the probe‐inserted depth into the sapwood. Magnitude of sap flow changed considerably between sunny and rainy days. The order of the main meteorological factors affecting the sap flow rate of Caragana korshinskii shrubs were: vapour pressure deficit > solar radiation > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season can be used to estimate the transpiration of Caragana korshinskii. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In order to evaluate factors controlling transpiration of six common eastern deciduous species in North America, a model describing responses of canopy stomatal conductance (GS) to net radiation (RN), vapor pressure deficit (D) and relative extractable soil water (REW) was parameterized from sap flux data. Sap flux was measured in 24 mature trees consisting of the species Carya tomentosa, Quercus alba, Q. rubra, Fraxinus americana, Liriodendron tulipifera, and Liquidambar styraciflua in a bottomland oak-hickory forest in the Duke Forest, NC. Species differences in model coefficients were found during the 1997 growing season. All species showed a reduction in GS with increasing D. RN influenced GS in the overstory shade intolerant L. styraciflua to a larger extent than the other species measured. In addition, despite a severe drought during the study period, only L. tulipifera showed a decline in GS with decreasing REW. The primary effect of the drought for the other species appeared to be early autumn leaf senescence and abscission. As a result, despite the drought in this bottomland forest accustomed to ample water supply, maximum daily transpiration (1.6 mm) and growing season transpiration (264 mm) were similar to a nearby upland forest measured during a year of above average precipitation. These results may aid in assessing differences in water use and the ability of bottomland deciduous species to tolerate alterations in the frequency or amount of precipitation. Results also suggest little variation in water use among forests of similar composition and structure growing in different positions in the landscape and subjected to large interannual variation in water supply.  相似文献   

6.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Conservation management for the water dependent desert‐oasis ecotone in arid northwest China requires information on the water use of the dominant species. However, no studies have quantified their combined water use or linked species composition to ecotone transpiration. Here, the water use of three dominant shelterbelt shrubs (Haloxylon ammodendron, Nitraria tangutorum, and Calligonum mongolicum) within an ecotone was measured throughout the full leaf‐out period for three shrub species from 30 May to 16 October 2014, with sap flow gauges using the stem heat balance approach. Species‐specific transpiration was estimated by scaling up sap flow velocities measured in individual stems, to stand area level, using the frequency distribution of stem diameter and assuming a constant proportionality between sap flow velocity and basal cross‐sectional area for all stems. The mean peak sap flux densities (Jsn) for H. ammodendron, N. tangutorum, and C. mongolicum, were 40.12 g cm?2 h?1, 71.33 g cm?2 h?1, and 60.34 g cm?2 h?1, respectively, and the mean estimated daily area‐averaged transpiration rates (Tdaily) for the same species were 0.56 mm day?1, 0.34 mm day?1, and 0.11 mm day?1. The accumulative stand transpiration was approximately 140.8 mm throughout the measurement period, exceeding precipitation by as much as 42.1 mm. Furthermore, Tdaily of these shrubs appeared to be much less sensitive to soil moisture as compared to atmospheric drivers, and the relationship between Jsn and atmospheric drivers was likely uninfluenced by soil moisture regimes in the whole profile (to 1‐m depth), especially for H. ammodendron and C. mongolicum. Results indicate that these shrubs may use deep soil water recharged by capillary rise, or may directly access shallow groundwater. This study provides quantitative data offering important implications for ecotone conservation and water and land resource management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Plant water use plays a crucial part in the soil–plant-atmosphere continuum. However, in karst regions, plants frequently suffer from water shortages due to low soil water storage capacity. Therefore, it is necessary to understand plant water consumption (as determined by sap flow) and seasonal variation of water sources to improve water management in karst catchments. In this study, thermal dissipation probes (TDP), calibrated using empirical equations, were used to measure the sap flow of three typical woody vegetations, including Coriaria nepalensis (sparse-shrub), Toona sinensis (secondary forest) and Populus adenopoda (shrub-grass). Oxygen and hydrogen stable isotopes were used to analyze seasonal variation of plant water sources. The results showed that: (1) T. Sinensis (3.89 ± 3.87 L·day−1) had significantly higher daily sap flow than C. nepalensis (0.33 ± 0.37 L·day−1) and P. adenopoda (0.09 ± 0.12 L·day−1); (2) daily sap flow was closely correlated to photosynthetically active radiation (PAR) and vapour pressure deficit (VPD); (3) over the entire study period, plants mainly used water from the surface soil horizons; and (4) a greater proportion of epikarst water was used for C. nepalensis than by T. sinensis and P. adenopoda over the whole growth stage, and more epikarst water was used in early and mid-growth stages compared to the late stage for the three species. This study contributes to a deeper understanding of the plant water use strategies in karst regions, and is helpful for ecosystem management.  相似文献   

9.
Spatial and temporal variation in wet canopy conditions following precipitation events can influence processes such as transpiration and photosynthesis, which can be further enhanced as upper canopy leaves dry more rapidly than the understory following each event. As part of a larger study aimed at improving land surface modelling of evapotranspiration processes in wet tropical forests, we compared transpiration among trees with exposed and shaded crowns under both wet and dry canopy conditions in central Costa Rica, which has an average 4200 mm annual rainfall. Transpiration was estimated for 5 months using 43 sap flux sensors in eight dominant, ten midstory and eight suppressed trees in a mature forest stand surrounding a 40‐m tower equipped with micrometeorological sensors. Dominant trees were 13% of the plot's trees and contributed around 76% to total transpiration at this site, whereas midstory and suppressed trees contributed 18 and 5%, respectively. After accounting for vapour pressure deficit and solar radiation, leaf wetness was a significant driver of sap flux, reducing it by as much as 28%. Under dry conditions, sap flux rates (Js) of dominant trees were similar to midstory trees and were almost double that of suppressed trees. On wet days, all trees had similarly low Js. As expected, semi‐dry conditions (dry upper canopy) led to higher Js in dominant trees than midstory, which had wetter leaves, but semi‐dry conditions only reduced total stand transpiration slightly and did not change the relative proportion of transpiration from dominant and midstory. Therefore, models that better capture forest stand wet–dry canopy dynamics and individual tree water use strategies are needed to improve accuracy of predictions of water recycling over tropical forests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
W. Zhao  X. Chang  Z. Zhang 《水文研究》2009,23(10):1461-1470
As an important source of income in the region's economy, the jujube plantations are very common in arid north‐western China, and their planted areas continue to expand. In the central Heihe River Basin of arid north‐western China, Linze jujube (Zizyphus jujuba Mill. var. inermis (Bunge) Rehd.) plantations cover more than 10,000 ha, too. Water use by this species is expected to change or modify catchment hydrological process. To our knowledge, there is no information on the transpiration and canopy conductance of the jujube plantations in arid north‐western China. Therefore, Transpiration and canopy conductance were monitored in a 14‐year‐old Linze jujube orchard. The experiment was carried out in the central Heihe River Basin, near Pingchuan Town (Linze County, Gansu Province, China) during growing season of 2006, from May to the first ten days of October. Eight trees were used to measure sap flow using the heat‐pulse‐velocity method. The orchard was irrigated adequately during the study. Transpiration was estimated from the sap flow measurements. During the experiment, the transpiration rate of the orchard ranged from 0·32 to 1·40 mm per day. Canopy conductance was obtained from estimated daily transpiration and climatic variables measured on a half‐hour basis, and canopy conductance for water vapour transfer was between 1·20 to 82·57 mm s?1, with a mean of 11·86 ± 6·84 mm s?1 during the observation period. Air temperature and vapour‐pressure deficit exhibited a linear relationship with sap flow velocity and the relationship between these factors and canopy conductance could be represented by an exponential decay function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
David McJannet 《水文研究》2008,22(16):3079-3090
Water table fluctuations and transpiration were monitored in a seasonally inundated Melaleuca quinquenervia floodplain forest at Cowley Beach, north Queensland, Australia. Techniques were developed to reconstruct inundation duration and seasonal and inter‐annual variability at this site using long‐term stream flow data. It was estimated that the median duration of inundation in any year was 75 days with maximum and minimum durations of 167 days and 8 days, respectively. Measurements of individual tree transpiration using heat‐pulse techniques showed a strong relationship between tree size and tree water use, which was used for scaling to stand transpiration. Stand transpiration rates were found to be closely tied to atmospheric drivers of evaporation, and transpiration of M. quinquenervia was found to be unaffected by inundation. This ability to transpire during inundation may be due to physiological adaptations of this species. These adaptations are believed to include dynamic root systems that can quickly respond to rising and falling water tables and dense networks of fine apogeotropic roots, which grow on and within the papery bark. Rates of stand transpiration remained low throughout the study (0·46 mm d?1, 164 mm y?1) despite the fact that transpiration was not limited by solar energy inputs or soil moisture deficit. Low stand transpiration was attributed to the low density, stunted nature and small sapwood area of trees at this site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Riparian cottonwood forests in dry regions of western North America do not typically receive sufficient growing season precipitation to completely support their relatively high transpiration requirements. Water used in transpiration by riparian ecosystems must include alluvial groundwater or water stored in the potentially large reservoir of the unsaturated soil zone. We used the stable oxygen and hydrogen isotope composition of stem xylem water to evaluate water sources used by the dominant riparian cottonwood (Populus spp.) trees and shrubs (Shepherdia argentea and Symphoricarpos occidentalis) in Lethbridge, Alberta, during 3 years of contrasting environmental conditions. Cottonwoods did not exclusively take up alluvial groundwater but made extensive use of water sourced from the unsaturated soil zone. The oxygen and hydrogen isotope compositions of cottonwood stem water did not strongly overlap with those of alluvial groundwater, which were closely associated with the local meteoric water line. Instead, cottonwood stem water δ18O and δ2H values were located below the local meteoric water line, forming a line with a low slope that was indicative of water exposed to evaporative enrichment of heavy isotopes. In addition, cottonwood xylem water isotope compositions had negative values of deuterium excess (d‐excess) and line‐conditioned (deuterium) excess (lc‐excess), both of which provided evidence that water taken up by the cottonwoods had been exposed to fractionation during evaporation. The shrub species had lower values of d‐excess and lc‐excess than had the cottonwood trees due to shallower rooting depths, and the d‐excess values declined during the growing season, as shallow soil water that was taken up by the plants was exposed to increasing, cumulative evaporative enrichment. The apparent differences in functional rooting pattern between cottonwoods and the shrub species, strongly influenced the ratio of net photosynthesis to stomatal conductance (intrinsic water‐use efficiency), as shown by variation among species in the δ13C values of leaf tissue.  相似文献   

13.
In north‐central Oklahoma eastern redcedar (Juniperus virginiana), encroachment into grassland is widespread and is suspected of reducing streamflow, but the effects of this encroachment on soil hydraulic properties are unknown. This knowledge gap creates uncertainty in understanding the hydrologic effects of eastern redcedar encroachment and obstructs fact‐based management of encroached systems. The objective of this study was to quantify the effects of eastern redcedar encroachment into tallgrass prairie on soil hydraulic properties. Leaf litter depth, soil organic matter, soil water repellency, soil water content, sorptivity, and unsaturated hydraulic conductivity were measured near Stillwater, OK, along 12 radial transects from eastern redcedar trunks to the center of the grassy intercanopy space. Eastern redcedar encroachment in the second half of the 20th century caused the accumulation of 3 cm of hydrophobic leaf litter near the trunks of eastern redcedar trees. This leaf litter was associated with increased soil organic matter in the upper 6 cm of soil under eastern redcedar trees (5.96% by mass) relative to the grass‐dominated intercanopy area (3.99% by mass). Water repellency was more prevalent under eastern redcedar than under grass, and sorptivity under eastern redcedar was 0.10 mm s?1/2, one seventh the sorptivity under adjacent prairie grasses (0.68 mm s?1/2). Median unsaturated hydraulic conductivity under grass was 2.52 cm h?1, four times greater than under eastern redcedar canopies (0.57 cm h?1). Lower sorptivity and unsaturated hydraulic conductivity would tend to decrease infiltration and increase runoff, but other factors such as rainfall interception by the eastern redcedar canopy and litter layer, and preferential flow induced by hydrophobicity must be examined before the effects of encroachment on streamflow can be predicted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Hemispherical photographs of forest canopies can be used to develop sophisticated models that predict incident below canopy shortwave radiation on the surface of interest (i.e. soil and water). Hemispherical photographs were collected on eight dates over the course of a growing season to estimate leaf area index and to quantify solar radiation incident on the surface of two stream reaches based on output from Gap Light Analyser and Hemisfer software. Stream reaches were shaded by a mixed‐deciduous Ozark border forested riparian canopy. Hemispherical photo model results were compared to observed solar radiation sensed at climate stations adjacent to each stream reach for the entire 2010 water year. Modeled stream‐incident shortwave radiation was validated with above‐stream pyranometers for the month of September. On average, the best hemispherical photo models underestimated daily averages of solar radiation by approximately 14% and 12% for E–W and N–S flowing stream reaches, respectively (44.7 W/m2 measured vs 38.4 W/m2 modeled E–W, 46.8 W/m2 vs. 41.1 W/m2N–S). The best hemispherical photo models overestimated solar radiation relative to in–Stream pyranometers placed in the center of each stream reach by approximately 7% and 17% for E–W and N–S stream reaches respectively (31.3 W/m2 measured vs 33.5 W/m2 modeled E–W, 31.5 W/m2 vs. 37.1 W/m2N–S). The model provides a geographically transferable means for quantifying changes in the solar radiation regime at a stream surface due to changes in canopy density through a growing season, thus providing a relatively simple method for estimating surface and water heating in canopy altered environments (e.g. forest harvest). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The Western Boreal Plain of North Central Alberta comprises a mosaic of wetlands and aspen (Populus tremuloides) dominated uplands where precipitation (P) is normally exceeded by evapotranspiration (ET). As such these systems are highly susceptible to the climatic variability that may upset the balance between P and ET. Above canopy evapotranspiration (ETC) and understory evapotranspiration (ETB) were examined using the eddy covariance technique situated at 25.5 m (7.5 m above tree crown) and 4.0 m above the ground surface, respectively. During the peak period of the growing seasons (green periods), ETC averaged 3.08 mm d?1 and 3.45 mm d?1 in 2005 and 2006, respectively, while ETB averaged 1.56 mm d?1 and 1.95 mm d?1. Early in the growing season, ETB was equal to or greater than ETC once understory development had occurred. However, upon tree crown growth, ETB was lessened due to a reduction in available energy. ETB ranged from 42 to 56% of ETC over the remainder of the snow‐free seasons. Vapour pressure deficit (VPD) and soil moisture (θ) displayed strong controls on both ETC and ETB. ETC responded to precipitation events as the developed tree crown intercepted and held available water which contributed to peak ETC following precipitation events >10 mm. While both ETC and ETB were shown to respond to VPD, soil moisture in the rooting zone is shown to be the strongest control regardless of atmospheric demand. Further, soil moisture and tension data suggest that rooting zone soil moisture is controlled by the redistribution of soil water by the aspen root system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The water and energy exchanges in forests form one of the most important hydro‐meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm, humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf‐fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf‐fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all‐wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly ‘U’‐shaped, and the minimum value (1·0) occurred in June and July. The Bowen ratio was very high (10–25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m?1 (10 mm s?1 in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of leaves also affects the canopy resistance, which was higher in the leaf‐fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1·16 mm day?1, and the maximum rate, 2·9 mm day?1, occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1·5 mm day?1. The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Eddy covariance technique was used to measure carbon flux during two growing seasons in 2003 and 2004 over typical steppe in the Inner Mongolia Plateau, China. The results showed that there were two different CO2 flux diurnal patterns at the grassland ecosystem. One had a dual peak in diurnal course of CO2 fluxes with a depression of CO2 flux after noon, and the other had a single peak. In 2003, the maximum diurnal uptake and emitting value of CO2 were ?7.4 and 5.4 g·m?2·d?1 respectively and both occurred in July. While in 2004, the maximum diurnal uptake and release of CO2 were ?12.8 and 5.8 g·m?2·d?1 and occurred both in August. The grassland fixed 294.66 and 467.46 g CO2·m?2 in 2003 and 2004, and released 333.14 and 437.17 g CO2·m?2 in 2003 and 2004, respectively from May to September. Water availability and photosynthetic active radiation (PAR) are two important factors of controlling CO2 flux. Consecutive precipitation can cause reduction in the ability of ecosystem carbon exchange. Under favorable soil water conditions, daytime CO2 flux is dependent on PAR. CO2 flux, under soil water stress conditions, is obviously less than those under favorable soil water conditions, and there is a light saturation phenomena at PAR=1200 μmol·m?2·s?1. Soil respiration was temperature dependent when there was no soil water stress; otherwise, this response became accumulatively decoupled from soil temperature.  相似文献   

18.
Transpirations of three dominated tree species, namely Mongol Scotch Pine (Pinus sylvestris var. mongolica Litvin), White elm (Ulmus pumila) and Gansu Poplar (Populus gansuensis Wang et Yang) in oasis shelter forest (Linze site) and of two dominated tree species, namely Euphrates Poplar (Populus euphratica Oliv.) and Russia olive (Elaeagnus angustifolia Linn.) in lowland desert (Erjinaqi site) have been estimated using measured sapflow in summer, autumn and winter, 2002 and in spring, 2003. An ENVIS System was used for each site to measure microclimate variables, soil moisture and sapflow every half an hour, and the study time scale is one day. In the 104 days of observation during the growing season at the Linze site, the average daily sapflow of Gansu Poplar is 9.93 L· d-1, and the average transpiration per unit leaf area is 1.99 mm · d-1. For White elm tree, the daily average sapflow is 4.08 L· d-1, while the daily average transpiration per unit leaf area is 0.49 mm · d-1. The values for Mongol Scotch Pine are 3.91 L· d-1 and 0.25 mm · d-1, respectively. In the total 73 days of observation during the growing season at the Erjinaqi site, the daily average sapflows of Russia olive and Euphrates Poplar are 12.1 and 20.97 L· d-1, respectively, and the average transpirations per unit leaf area are 0.22 and 0.31 mm · d-1, respectively. In the observation period of the growing season, tree conductances of Mongol Scotch Pine, White elm, Gansu Poplar or Russia olive show an exponential relationship with the daily average air temperature or vapour pressure deficit, but the relationship is not so obvious between tree conductance and global radiation. The transpiration process of each tree species is affected by all the observed four environmental variables. The response of tree conductance to different climatic factors changes with tree species. The effect of the same factor to the same tree species is also variable in different growing stages. The sapflow of every tree species is relatively large in later spring to early summer, and low in summer, and then reaches its largest value in later September. In the mid-November, the sapflow is relatively large, especially the deciduous tree species. This may be characteristic of the tree species in Arid Regions of Northwest China.  相似文献   

19.
Zhang  Rongfei  Xu  Xianli  Liu  Meixian  Zhang  Yaohua  Xu  Chaohao  Yi  Ruzhou  Luo  Wei  Soulsby  Chris 《中国科学:地球科学(英文版)》2019,62(11):1744-1755
The critical zone(CZ) represents the intersection of the biosphere with the atmosphere, hydrosphere and lithosphere.Understanding the hydrological processes and human impact factors on the CZ is fundamental to sustainable water resources management for agroforestry. Transpiration(T) is an important component of terrestrial evapotranspiration(ET), and understanding the time lag(TL) between vegetation transpiration and meteorological factors can improve our knowledge of the mechanisms of vegetation adaptability to a changing environment. However, the controlling factors on the TL remain poorly understood. Therefore, the objective of this study is identifying the temporal dynamics of key controlling factors on the TL, using a typical deciduous broad-leaved tree species(Zenia insigins Chun) of CZ in subtropical humid karst regions. This species is used as an example to explore the characteristics of the TL between SF(sap flow) and hydro-meteorological forcing. Sap flow in these 6 trees was monitored using the thermal dissipation probes(TDP). Results showed that:(1) the peak of diurnal sap flow generally lagged behind PAR but preceded Ta(air temperature), RH(relative humidity) and VPD(vapor pressure deficit), with the mean TL of-67.4 min(PAR), 90.5 min(Ta), 91.6 min(RH) and 92.9 min(VPD), respectively;(2) TL had no significant relationships with the daily mean meteorological factors and soil moisture, but was highly(R~20.66) correlated to CRs(changing rates of meteorological factors) in the morning;(3) At seasonal scale, the sap flow rate and TL both were controlled by the seasonality of precipitation and temperature. Overall, the seasonality of the TL was caused by plants' high water loss and strongly active physiological response in hot seasons, leading to close stomata earlier than in cold seasons;(4) The reason why CRs proposed can explain the TL better than mean values of metrological factors is that the CRs considered the distribution and change processes of metrological factors in the daytime. This study may be helpful for understanding the physiological response of vegetation to climatic change, and may be useful for constructing models to simulate transpiration processes more accurately during a day.  相似文献   

20.
Photosynthetically active radiation (PAR) is essential for plant photosynthesis and carbon cycle, and is also important for meteorological and environmental monitoring. To advance China’s disaster and environmental monitoring capabilities, the HJ-1A/B satellites have been placed in Earth orbit. One of their environmental monitoring objectives is the study of PAR. We simulated direct solar, scattered and environment radiation between 400 and 700 nm under different atmospheric parameters (solar zenith angle, atmospheric water vapor, atmospheric ozone, aerosol optical thickness, surface elevation and surface albedo), and then established a look-up table between these input parameters and PAR. Based on the look-up table, we used HJ-1A/B aerosol and surface albedo outputs to derive the corresponding PAR. Validation of inversed instantaneous and observed PAR values using HJ-1 Heihe experimental data had a root mean square error of 25.2 W m?2, with a relative error of 5.9%. The root mean square error for accumulated daily PAR and observed values was 0.49 MJ m?2, with a relative error of 3.5%. Our approach improved significantly the computational efficiency, compared with using directly radiation transfer equations. We also studied the sensitivity of various input parameters to photosynthetically active radiation, and found that solar zenith angle and atmospheric aerosols were sensitive PAR parameters. Surface albedo had some effect on PAR, but water vapor and ozone had minimal impact on PAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号