首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface composition of Europa is of great importance for understanding both the internal evolution of Europa and its putative ocean. The Near Infrared Mapping Spectrometer (NIMS) investigation on Galileo observed Europa and the other Galilean satellites from 0.7 to 5.2 μm with spatial resolution down to a few kilometers during flybys by the spacecraft as it orbited Jupiter. These data have been analyzed and results published over the life of the Galileo mission and afterward. One result was the discovery of hydrated minerals at some locations on Europa and Ganymede. The data are noisy, especially for Europa, due to radiation affecting the NIMS electronics and detectors, and other artifacts are also present. The NIMS data are now being reprocessed using the accumulated knowledge gained over the entire missions to remove noise spikes and compensate for some other defects in the data. We are analyzing these reprocessed data in an attempt to defined better the nature of the hydrate spectral features and improve their interpretation. We report here on analyses of two NIMS reprocessed observations for the 0.7-3-μm region. A revised hydrate spectrum is calculated and mapped in detail across two lineaments. The spectrum shows the expected distorted water features but little or no spectral structure in these features. A narrow, weak spectral feature appears at 1.344 μm, which is weakly correlated with lower albedo. Several other weak features may be present but are difficult to confirm in these limited data sets. The hydrate signature shows the greatest strength within and toward the center of the lineaments, confirming and strengthening the association of the hydrate with these endogenic features. This trend may indicate that the material in the lineaments is youngest toward the center and has more water frost coverage toward the edge. A small, visually dark, circular feature has a spectrum that shows both hydrate and crystalline water ice features and perhaps contains a hydrate different in spectral characteristics and perhaps composition than found in the lineament.  相似文献   

2.
Observations of an occultation of Europa by Io are fitted by a model light curve. The model has five free parameters, namely the radius of Europa, the impact parameter, the brightness ratio of the satellites, the time of midevent and the mean relative velocity. The model assumes a fixed value for the radius of Io and for the solar phase angle α, and that Europa has a uniform surface brightness. The OC residuals of the best fitting light curve are very small (~0.002 mag) and of a purely random nature; there is no evidence of albedo features. Taking α = 0 does not affect significantly the quality of the fit. Six mutual eclipses were also observed, and their times of minima agree well with the predictions of Aksnes Icarus21 (1974). For two events these predictions differ by about 20 min from those of Brinkmann and Millis Sky & Telescope45 (1973).  相似文献   

3.
Kari Lumme  H.J. Reitsema 《Icarus》1978,33(2):288-300
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004.  相似文献   

4.
Bonnie J. Buratti 《Icarus》1985,61(2):208-217
A radiative transfer model, derived largely from the work of B.W. Hapke (1981, J. Geophys. Res.86, 3039–3054) and J.D. Goguen (1981, Ph.D. thesis, Cornell University, Ithaca, N.Y.), is fit to Voyager imaging observations of Europa, Mimas, Enceladus, and Rhea. It is possible to place constraints on the single-scattering albedo, the porosity of the optically active upper regolith, the single-particle phase functions, and, in the cases of Europa and Mimas, the mean slope angle of macroscopic surface features. The texture of the surfaces of the Saturnian satellites appears to be similar to the Earth's moon. However, Europa is found to have a distinctly more compact regolith and a more forward-scattering single-particle phase function.  相似文献   

5.
The Galileo photopolarimeter–radiometer (PPR) made over 100 observations of Europa’s surface temperature. We have used these data to constrain a diurnal thermal model and, thus, map the thermal inertia and bolometric albedo over 20% of the surface. We find an increased thermal inertia at mid-latitudes that is widespread in longitude and does not appear to correlate with geology, albedo, or other observables. Our derived thermophysical properties can be used to predict volatile stability across the surface over the course of a day and in planning of infrared instruments on future missions. Furthermore, while observations in the thermal infrared can and have been used to find endogenic activity, no such activity was detected at Europa. We have calculated the detection limits of these PPR observations and find that 100 km2 hotspots with temperatures of 116–1200 K could exist undetected on the surface, depending on the location.  相似文献   

6.
Photometric observations of Jupiter’s moons Io and Europa in the spectral band V have been made at the Crimean Astrophysical Observatory for four years in order to construct their light curves reduced to a Solar phase angle of 6°. Comparison of these data with other ground-based observations shows good agreement. This study confirms why the moons that are close to Jupiter have a brighter leading hemisphere. The trailing hemispheres of Io and Europa, which are located in the rapidly rotating magnetic field of Jupiter, are exposed to bombardment by charged particles of the magnetic field. Leaving out of consideration the differences in brightness between the two hemispheres results in serious discrepancies between the space and ground-based photometry data.  相似文献   

7.
Color variations of the four Galilean satellites have been monitored during the summer of 1971 with the McDonald Observatory area-scanning photometer. All were found to vary with orbital phase, with the exception of Europa in B-V. The curves suggest complex variations in surface make-up with some large features, possibly the result of interaction with the Jovian environment.  相似文献   

8.
The ultraviolet and visible albedos of a number of terrestrial basalts, gabbros and anorthosites have been investigated over the wavelength range 800 Å to 8000 Å and compared with previously reported measurements of the lunar albedo. For most of the terrestrial samples the albedo changed only slightly between visible and middle ultraviolet wavelengths in striking contrast to the Moon where the ultraviolet albedo is about a factor of five or ten less than it is in the visible. Some of the lighter coloured terrestrial anorthositic samples were however found to have albedo curves that fairly closely approximate the ultraviolet darkening of the Moon. The general shape of the lunar ultraviolet albedo may be caused by a layer of anorthositic fragments on the Moon such as have been found to be a very abundant component of the Apollo ‘coarse-fines’.  相似文献   

9.
We report 12.6-cm-wavelength radar observations of Europa, Ganymede, and Callisto made at the Arecibo Observatory in November 1977 and February 1979. When combined with previous observations, our results establish firmly the distinguishing radar properties of these satellites: (i) high geometric albedos, α; (ii) circular polarization ratios, μC, which anomalously exceed unity; (iii) linear polarization ratios, μL, which are approximately 0.5; and (iv) diffuse scattering which varies as cosnθ, where θ is angle of incidence and 1 ? n ? 2. We tabulate weighted-mean values of α, μC, μL, and n derived from observations between 1975 and 1979. The values of μC for Ganymede and Europa are nearly identical and significantly larger than that for Callisto. The values of n for Ganymede and Callisto are nearly identical and significantly smaller than that for Europa. Although significant albedo and/or polarization features are common in the radar spectra, the fractional rms fluctuation in disk-integrated properties is only ~10%. No time variation in the radar properties has been evident during 1976–1979.  相似文献   

10.
Multicolor imaging of Mercury has been performed with the 0.5 m Swedish Vacuum Solar Telescope (SVST) on La Palma at five elongations from 1995 to 1999, resulting in a global Minnaert normalized map of the surface at 200 km resolution. Short exposure CCD imaging has been performed in the optical and near-infrared with broad- and intermediate band filters at wavelengths from 550 to 940 nm. Positions for 86 and morphological parameters for 63 bright albedo features on the Hermean surface have been determined. The distribution of bright albedo features is shown to be spatially uniform on the well known (i.e., observed by Mariner 10) and poorly known hemispheres, as well as for the global surface. The number densities of bright albedo features on the two hemispheres are very similar. This indicates that the late evolutionary history of the Hermean regolith has not varied on regional to global scales in terms of impacts generating bright ray craters, constituting approximately 70% of the detected bright albedo features. The locations of bright albedo features correspond well to those determined from nominal resolution and smeared (to the approximate resolution of the SVST data) Mariner 10 maps. Feature parameters (radius, center intensity and intensity gradient) have been determined and correlated with the geologic nature of a subset of observed features imaged by the Mariner 10 Vidicon camera. No difference in feature properties is apparent between the poorly known and well known hemispheres. Based on a comparitive study of Mariner 10 image data, ray craters tend to have higher center intensities and smaller intensity gradients than bright albedo features which are not ray craters. It is however concluded that it is not possible to uniquely determine the geologic nature of features with a high statistical significance, based on their morphological parameters at 200 km resolution. We do not find any general correlation between the locations of radar-bright and optically bright or dark albedo features. The surface contrast decreases from 35% to 25% over the wavelength range 550–940 nm. The range of feature contrasts is similar for all surface regions, except for the ray crater Kuiper, whose contrast to the mean surrounding surface is 50% at a wavelength of 750 nm. Kuiper is an extreme albedo feature also in terms of its center intensity and slope. The mean value of the Minnaert slope parameter for the global surface is determined to 0.76±0.10. A measured constant value of the Minnaert slope with wavelength indicates that the spectral slope for typical Hermean regolith should be linear over the wavelength range 550–940 nm.  相似文献   

11.
Near-infrared observations of Europa's disk-integrated opposition surge by Cassini VIMS, first published in Fig. 4 of Brown et al. (2003, Icarus, 164, 461), have now been modeled with the commonly used Hapke photometric function. The VIMS data set emphasizes observations at 16 solar phase angles from 0.4° to 0.6°—the first time the <1° phase “heart” of Europa's opposition surge has been observed this well in the near-IR. This data set also provides a unique opportunity to examine how the surge is affected by changes in wavelength and albedo: at VIMS wavelengths of 0.91, 1.73, and 2.25 μm, the geometric albedo of Europa is 0.81, 0.33, and 0.18, respectively. Despite this factor-of-four albedo range, however, the slope of Europa's phase curve at <1° phase is similar at all three wavelengths (to within the error bars) and this common slope is similar to the phase coefficient seen in visible-light observations of Europa. The two components of the opposition surge—involving different models of the physical cause of the surge—are the Shadow Hiding Opposition Effect (SHOE) and the Coherent Backscatter Opposition Effect (CBOE). Because of sparse VIMS phase coverage, it is not possible to constrain all the surge parameters at once in a Hapke function that has both SHOE and CBOE; accordingly, we performed separate Hapke fits for SHOE-only and CBOE-only surges. At 2.25 μm, where VIMS data are somewhat noisy, both types of surges can mimic the slope of the VIMS phase curve at <1° phase. At 0.91 and 1.73 μm, however—where VIMS data are “cleaner”—CBOE does a noticeably poorer job than SHOE of matching the VIMS phase coefficient at <1° phase; in particular, the best CBOE fit insists on having a steeper phase-curve slope than the data. This discrepancy suggests that Europa's near-IR opposition surge cannot be explained by CBOE alone and must have a significant SHOE component, even at wavelengths where Europa is bright.  相似文献   

12.
We report regional-scale low-resolution backscatter images of Titan's surface acquired by the Cassini RADAR scatterometer at a wavelength of 2.18-cm. We find that the average angular dependence of the backscatter from large regions and from specific surface features is consistent with a model composed of a quasi-specular Hagfors term plus a diffuse cosine component. A Gaussian quasi-specular term also fits the data, but less well than the Hagfors term. We derive values for the mean dielectric constant and root-mean-square (rms) slope of the surface from the quasi-specular term, which we ascribe to scattering from the surface interface only. The diffuse term accommodates contributions from volume scattering, multiple scattering, or wavelength-scale near-surface structure. The Hagfors model results imply a surface with regional mean dielectric constants between 1.9 and 3.6 and regional surface roughness that varies between 5.3° and 13.4° in rms-slope. Dielectric constants between 2 and 3 are expected for a surface composed of solid simple hydrocarbons, water ice, or a mixture of both. Smaller dielectric constants, between 1.6 and 1.9, are consistent with liquid hydrocarbons, while larger dielectric constants, near 4.5, may indicate the presence of water-ammonia ice [Lorenz, R.D., 1998. Icarus 136, 344-348] or organic heteropolymers [Thompson, W.R., Squyres, S.W., 1990. Icarus 86, 336-354]. We present backscatter images corrected for angular effects using the model residuals, which show strong features that correspond roughly to those in 0.94-μm ISS images. We model the localized backscatter from specific features to estimate dielectric constant and rms slope when the angular coverage is within the quasi-specular part of the backscatter curve. Only two apparent surface features are scanned with angular coverage sufficient for accurate modeling. Data from the bright albedo feature Quivira suggests a dielectric constant near 2.8 and rms slope near 10.1°. The dark albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.  相似文献   

13.
Topographic features affect the scattering properties of planetary surfaces by casting shadows and altering the local incidence and emission angles. Measurements of this phenomenon were obtained on the Cornell goniometer for both high and low albedo surfaces. For the low albedo surface, the decrease in reflected radiation due to topography increases sharply with increasing phase angle, whereas for the high albedo sample the effects are approximately constant between phase angles of 30 and 70°. The observations are in good agreement with a theoretical model in the case of the dark surface. However, for the high albedo surface the model overestimates the effects by about a factor of 2, since it does not include the partial illumination of shadows by multiple scattering. For both high and low albedo surfaces, the effects of topography do not become significant until a phase angle of 30–40°.  相似文献   

14.
This investigation uses linear mixture modeling employing cryogenic laboratory reference spectra to estimate surface compositions and water ice grain sizes of Europa’s ridged plains and smooth low albedo plains. Near-infrared spectra for 23 exposures of ridged plains materials are analyzed along with 11 spectra representing low albedo plains. Modeling indicates that these geologic units differ both in the relative abundance of non-ice hydrated species and in the abundance and grain sizes of water ice. The background ridged plains in our study area appear to consist predominantly of water ice (∼46%) with approximately equal amounts (on average) of hydrated sulfuric acid (∼27%) and hydrated salts (∼27%). The solutions for the smooth low albedo plains are dominated by hydrated salts (∼62%), with a relatively low mean abundance of water ice (∼10%), and an abundance of hydrated sulfuric acid similar to that found in ridged plains (∼27%). The model yields larger water ice grain sizes (100 μm versus 50-75 μm) in the ridged plains. The 1.5-μm water ice absorption band minimum is found at shorter wavelengths in the low albedo plains deposits than in the ridged plains (1.498 ± .003 μm versus 1.504 ± .001 μm). The 2.0-μm band minimum in the low albedo plains exhibits a somewhat larger blueshift (1.964 ± .006 μm versus 1.983 ± .006 μm for the ridged plains).The study area spans longitudes from 168° to 185°W, which includes Europa’s leading side-trailing side boundary. A well-defined spatial gradient of sulfuric acid hydrate abundance is found for both geologic units, with concentrations increasing in the direction of the trailing side apex. We associate this distribution with the exogenic effects of magnetospheric charged particle bombardment and associated chemical processing of surface materials (the radiolytic sulfur cycle). However, one family of low albedo plains exposures exhibits sulfuric acid hydrate abundances up to 33% lower than found for adjacent exposures, suggesting that these materials have undergone less processing, thus implying that these deposits may have been emplaced more recently.Modeling identifies high abundances (to 30%) of magnesium sulfate brines in the low albedo plains exposures. Our investigation marks the first spectroscopic identification of MgSO4 brine on Europa. We also find significantly higher abundances of sodium-bearing species (bloedite and mirabilite) in the low albedo plains. The results illuminate the role of radiolytic processes in modifying the surface composition of Europa, and may provide new constraints for models of the composition of Europa’s putative subsurface ocean.  相似文献   

15.
《Icarus》1987,72(2):358-380
We present the results of an 8-year program of spectrophometry of the Galilean satellites of Jupiter that was undertaken using the International Ultraviolet Explorer (IUE) Spacecraft. The ultraviolet geometric albedos of all four satellites are low. This is consistent with the hypothesis that sulfurous materials escaping from the surface of Io are being distributed by magnetospheric processes to the surfaces of the other three objects. Although iron bearing silicates may also cause UV darkening, these materials also have spectral features in the visible region of the spectrum which are not found in the spectra of the Galilean satellites. For Io, we find that the ultraviolet geometric albedo is very low (Puv ∼ 0.04). The trailing hemisphere has an albedo that is higher than that of the leading hemisphere. This is opposite of what is observed at visual wavelengths. The decrease of albedo shortward of 0.33 μm is consistent with groundbased observations (Nelson and Hapke, 1978) and the laboratory reflection spectrum of sulfur dioxide frost. The hemispheric albedo asymmetry is consistent with a variable distribution of the frost, it being present in greater abundance on Io's leading hemisphere. The strenght of this feature has not changed with respect to longitude over the8 years of this study. The phase coefficients and opposition surges at ultraviolet wavelenghts indicate that Io's surface regolith is very porous. Europa has the highest ultraviolet albedo of all the Galilean satellites (Puv ∼ 0.2). This not inconsistent with the hypothesis of recent resurfacing. However, this albedo is not high enough to be consistent with a surface of pure water ice. We confirm a previously reported ultraviolet spectral asymmetry between Europa's leading and trailing hemispheres. The new data are consistent with the previous analyses which interpreted this as the spectral signature of sulfur ions from the Jovian magnetosphere which had been embedded preferentially on the trailing side of Europa's predominately water ice.surface. The opposition surge observed for Europa's trailing side is greater than that for the leading side. This implies that the trailing side is less compact than the leading side, perhaps due to gardening from the ion implantation process. Ganymede's ultraviolet albedo (Puv ∼ 0.10) is lower than Europa's. Ganymede has an ultraviolet spectral asymmetry that is similar to Europa's for wavelenghts longer than 0.28 μm. However, at wavelengths shorter than 0.28 μm, the two objects have different opposite hemispherical spectral ratios, indicating that the same mechanism cannot be used to explain the ultraviolet spectral albedo of both objects. One possible explanation is that ozone is present in addition to sulfur embedded on Ganymede's surface. The ultraviolet albedo and opposite hemispherical spectral ratio of Calisto is spectrally flat, indicating that the surface is covered by a material that is spectrally absorbing in the ultraviolet but has no change in absorption at the ultraviolet wavelenghts. The orbital phase variation in the ultraviolet indicates that the absorber is assymmetrically distributed in longitude.  相似文献   

16.
The full set of high-resolution observations from the Galileo Ultraviolet Spectrometer (UVS) is analyzed to look for spectral trends across the surface of Europa. We provide the first disk-resolved map of the 280 nm SO2 absorption feature and investigate its relationship with sulfur and electron flux distributions as well as with surface features and relative surface ages. Our results have implications for exogenic and endogenic sources. The large-scale pattern in SO2 absorption band depth is again shown to be similar to the pattern of sulfur ion implantation, but with strong variations in band depth based on terrain. In particular, the young chaos units show stronger SO2 absorption bands than expected from the average pattern of sulfur ion flux, suggesting a local source of SO2 in those regions, or diapiric heating that leads to a sulfur-rich lag deposit.While the SO2 absorption feature is confined to the trailing hemisphere, the near UV albedo (300-310 nm) has a global pattern with a minimum at the center of the trailing hemisphere and a maximum at the center of the leading hemisphere. The global nature of the albedo pattern is suggestive of an exogenic source, and several possibilities are discussed. Like the SO2 absorption, the near UV albedo also has local variations that depend on terrain type and age.  相似文献   

17.
Optical properties of small particles of olivine (less than 0.1 μ) have been studied in the ultraviolet as an example of an insulating solid. Very little structure survives in the ultraviolet extinction curves for such small particles. By contrast ‘surface modes’, observed for graphite small particles in the ultraviolet and for olivine particles in the infrared, produce dominant and persistent structure in extinction. The general trend of optical properties of graphite is surprisingly similar to the behavior required to explain all features of the interstellar extinction and albedo curves from near visible to 1000 Å. Measured extinction of small olivine particles in the infrared agrees with calculations based on newly measured optical constants, but dominant sharp structure in the 10μ region still presents a bit of a problem in explaining ‘silicate’ features in astronomical data.  相似文献   

18.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

19.
Hauke Hussmann  Tilman Spohn 《Icarus》2004,171(2):391-410
Coupled thermal-orbital evolution models of Europa and Io are presented. It is assumed that Io, Europa, and Ganymede evolve in the Laplace resonance and that tidal dissipation of orbital energy is an internal heat source for both Io and Europa. While dissipation in Io occurs in the mantle as in the mantle dissipation model of Segatz et al. (1988, Icarus 75, 187), two models for Europa are considered. In the first model dissipation occurs in the silicate mantle while in the second model dissipation occurs in the ice shell. In the latter model, ice shell melting and variations of the shell thickness above an ocean are explicitly included. The rheology of both the ice and the rock is cast in terms of a viscoelastic Maxwell rheology with viscosity and shear modulus depending on the average temperature of the dissipating layer. Heat transfer by convection is calculated using a parameterization for strongly temperature-dependent viscosity convection. Both models are consistent with the present orbital elements of Io, Europa, and Ganymede. It is shown that there may be phases of quasi-steady evolution with large or small dissipation rates (in comparison with radiogenic heating), phases with runaway heating or cooling and oscillatory phases during which the eccentricity and the tidal heating rate will oscillate. Europa's ice thickness varies between roughly 3 and 70 km (dissipation in the silicate layer) or 10 and 60 km (dissipation in the ice layer), suggesting that Europa's ocean existed for geological timescales. The variation in ice thickness, including both convective and purely conductive phases, may be reflected in the formation of different geological surface features on Europa. Both models suggest that at present Europa's ice thickness is several tens of km thick and is increasing, while the eccentricity decreases, implying that the satellites evolve out of resonance. Including lithospheric growth in the models makes it impossible to match the high heat flux constraint for Io. Other heat transfer processes than conduction through the lithosphere must be important for the present Io.  相似文献   

20.
The highest resolution (pixel scale 30 km) images of Ceres to date have been acquired by the Advanced Camera for Surveys onboard Hubble Space Telescope, through three wide band filters, centered at 535, 335, and 223 nm, covering more than one rotation of Ceres. The lightcurve at 535 nm agrees with earlier observations at V-band [Tedesco, E.F., Taylor, R.C., Drummond, J., Harwood, D., Nickoloff, I., Scaltriti, F., Schober, H. J., Zappala, V., 1983. Icarus 54, 23-29] in terms of magnitude, amplitude, and shape. The 0.04 magnitude lightcurve amplitude cannot be matched by Ceres' rotationally symmetric shape, and is modeled here by albedo patterns. The geometric albedos at the above three wavelengths are measured to be 0.087±0.003, 0.056±0.002, and 0.039±0.003, respectively. V-band geometric albedo is calculated to be 0.090±0.003, consistent with earlier observations [Tedesco, E.F., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 1090-1138]. A strong absorption band (30%) centered at about 280 nm is observed, but cannot be identified with either laboratory UV spectra or the spectra of Europa or Ganymede. The single-scattering albedo has been modeled to be 0.070±0.002, 0.046±0.002, and 0.032±0.003, respectively. The photometric roughness of Ceres' surface is found to be about 44°±5° from photometric modeling using Hapke's theory, consistent with earlier radar observations [Mitchell, D.L., Ostro, S.J., Hudson, R.S., Rosema, K.D., Campbell, D.B., Velez, R., Chandler, J. F., Shapiro, I.I., Giorgini, J.D., Yeomans, D.K., 1996. Icarus 124, 113-133]. The first spatially resolved surface albedo maps of Ceres at three wavelengths have been constructed from HST observations, as well as the corresponding color maps. Eleven surface albedo features are identified, ranging in scale from 40-350 km. Overall the range of these albedo and color variations is small compared to other asteroids and some icy satellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号