首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shuguang Liu 《水文研究》2001,15(12):2341-2360
Simple but effective models are needed for the prediction of rainfall interception under a full range of environmental and management conditions. The Liu model was validated using data published in the literature and was compared with two leading models in the literature: the Rutter and the Gash models. The Liu model was tested against the Rutter model on a single‐storm basis with interception measurements observed from an old‐growth Douglas fir (Pseudotsuga menziesii) forest in Oregon, USA. Simulated results by the Liu model were close to the measurements and comparable to those predicted by the Rutter model. The Liu model was further tested against the Gash model on a multistorm basis. The Gash and Liu models successfully predicted long‐term interception losses from a broad range of 20 forests around the world. Results also indicated that both the Gash and the Liu models could be used to predict rainfall interception using daily rainfall data, although it was assumed in both models that there is only one storm per rain day. The sensitivity of the Liu model to stand storage capacity, canopy gap fraction and evaporation rate from wet canopy surface during rainfall was investigated. Results indicate that the Liu model has the simplest form, least data requirements and comparable accuracy for predicting rainfall interception as compared with the Rutter and the Gash models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
《Journal of Hydrology》1999,214(1-4):103-110
During the growing season of 1995, canopy water fluxes were measured within a northern hardwood stand in southern Ontario, Canada. Observed canopy interception loss, throughfall, and stemflow fluxes from the stand were 19.3±3.5%, 76.4±2.9%, and 4.3±2.0% of incident precipitation, respectively. Both the original and revised Gash analytical rainfall interception loss models simulated these fluxes within the standard error of the observed estimates, suggesting that the analytical model may be appropriate for further applications within this forest type. The revised Gash model is recommended for further applications as it is better physically based. Both the original and revised models suggest that ∼60% of interception loss during the study period was evaporation from the canopy once rainfall has ceased while evaporation from the saturated canopy during rainfall accounted for ∼27%–33% of interception loss. Additional components of interception (e.g., evaporation from trunks) were computed to be minor contributors to total canopy interception loss.  相似文献   

3.
José Návar 《水文研究》2013,27(11):1626-1633
The quantitative importance of rainfall interception loss and the performance of the reformulated Gash model were evaluated as a function of basal area in Mexico's northeastern temperate forest communities. A sensitivity analysis as well as an iterative search of parameters matched interception loss measurements and assessments and isolated coefficient values that drive the model performance. Set hypothesis was tested with a total of 73 rainfalls recorded on four forest stands with different canopy cover for model fitting (39) and validation (34). The reformulated Gash model predicted well rainfall interception loss because mean deviations between recorded and modelled interception loss as a function of gross rainfall, MD, were <2.6% and 5.3% for fitting and validating parameter data sets, respectively. Basal area was negatively related to the model performance, but maximum projected MD range values can be found in most interception loss studies, for example, <7% when basal area is <5 m2 ha?1. The wet canopy evaporation rate and the canopy storage coefficient drive interception loss and the iterative parameter search showed that high wet canopy evaporation rates were expected in these forests. These parameters must be further studied to physically explain drivers of high wet canopy evaporation rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A review of rainfall interception modelling   总被引:4,自引:0,他引:4  
This paper is a review of physically-based rainfall interception modelling. Fifteen models were selected, representing distinct concepts of the interception process. Applications of these models to field data sets published before March 2008 are also analysed. We review the theoretical basis of the different models, and give an overview of the models’ characteristics. The review is designed to help with the decision on which model to apply to a specific data set. The most commonly applied models were found to be the original and sparse Gash models (69 cases) and the original and sparse Rutter models (42 cases). The remaining 11 models have received much less attention, but the contribution of the Mulder model should also be acknowledged. The review reveals the need for more modelling of deciduous forest, for progressively more sparse forest and for forest in regions with intensive storms and the consequent high rainfall rates. The present review also highlights drawbacks of previous model applications. Failure to validate models, the few comparative studies, and lack of consideration given to uncertainties in measurements and parameters are the most outstanding drawbacks. Finally, the uncertainties in model input data are rarely taken into account in rainfall interception modelling.  相似文献   

5.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The forest canopy affects the water entering the forest ecosystem by intercepting rainfall. This is especially pertinent in forests that depend on rainfall for their ecological water needs, quantifying and simulating interception losses provide critical insights into their ecological hydrological processes. In the semi-arid areas of the Loess Plateau, afforestation has become an effective ecological restoration measure. However, the rainfall interception process of these plantations is still unclear. To quantify and model the canopy interception of these plantations, we conducted a two-year rainfall redistribution measurement experiment in three typical plantations, including a deciduous broadleaf plantation (Robinia pseudoacacia) and two evergreen coniferous plantations (Platycladus orientalis and Pinus tabuliformis). Based on this, the revised Gash model was used to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. The experiment clarified the rainfall redistribution in the three plantations, and the proportions of throughfall to gross rainfall in Robinia pseudoacacia, Platycladus orientalis, and Pinus tabuliformis were 84.8%, 70.4%, and 75.6%; corresponding, the stemflow proportions were 2.0%, 2.2%, and 1.8%; the interception losses were 13.2%, 27.4%, and 22.6%, respectively. The dominant rainfall pattern during the experiment was characterized by low-amounts, moderate-intensity, and short-duration, during which the highest interception proportions across the three plantations were observed. We used the Penman-Monteith equation and the regression method, respectively, to estimate the canopy average evaporation rate of the revised Gash model, finding that the latter provides a closer match to the measured cumulative interception (NSE >0.7). When simulating interception under the three rainfall patterns, the model with the regression method better simulated the cumulative interception and event-scale interception for Platycladus orientalis and Pinus tabuliformis plantations under the dominant rainfall pattern. The results contribute valuable information to assess the impact of forest rainfall interception on regional hydrologic processes.  相似文献   

7.
J. W. Finch  A. B. Riche 《水文研究》2010,24(18):2594-2600
Concern has been expressed that Miscanthus x giganteus, a dedicated biomass crop, may have a high water use, with implications for its economic yield and impacts on water resources. There is particular uncertainty about one component of the water use, the interception loss. Measurements of the interception loss were made in a plot of the crop at a site in south‐east England, during 1997/1998 and 1998/1999. The measured interception losses were 25 and 24% of gross rainfall, respectively. Winter interception losses are relatively high, which is attributed to the slow rate of leaf loss. A Monte Carlo procedure was used to optimize three of the parameters of the Gash interception model on the 1997/1998 data. The simulated values had an uncertainty of 1·1 mm per storm in 1997/1998 and 2·9 mm per storm in 1998/1999. The model was also used to investigate the potential effect of the evaporation rate being overestimated due to the measurements being made in an experimental plot. This showed that the interception losses might be reduced to 21 and 18% in field scale plantations. A consideration of the relative interception rate demonstrated that the crop behaved more like a forest, in terms of the interception losses, during the winter months. © Crown Copyright 2010. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

8.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

9.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   

10.
Quantifying and partitioning evapotranspiration (ET) into evaporation and transpiration is challenging but important for interpreting vegetation effects on the water balance. We applied a model based on the theory of maximum entropy production to estimate ET for shrubs for the first time in a low‐energy humid headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the growing season was returned to the atmosphere through ET (59 ± 2% as transpiration), with 22% of rainfall ascribed to interception loss and understory ET. The remainder of rainfall percolated below the rooting zone. The maximum entropy production model showed good capability for total ET estimation, in addition to providing a first approximation for distinguishing evaporation and transpiration in such ecosystems. This study shows that this simple and low‐cost approach has potential for local to regional ET estimation with availability of high‐resolution hydroclimatic data. Limitations of the approach are also discussed.  相似文献   

11.
《Journal of Hydrology》2002,255(1-4):1-11
Some analyses are carried out with regard to canopy interception processes during rainfall events based on a tank model. A hypothesis, rainfall interception rate is proportional to the product of potential evaporation and rainfall intensity, is formed from past experimental data, and is applied to the data in this study. Computational equations are proposed to the interception rate and accumulative interception loss under constant rainfall intensity. Data from the Shirakawatani experimental forested catchment are used in order to examine the relationship between the interception rate and rainfall intensity, the ratio of the interception rate to rainfall intensity and potential evaporation, accumulative interception loss and the rainfall duration, and accumulative interception loss and accumulative rainfall. These regression relations show that interception processes are described by rainfall intensity and potential evaporation. An equation relating the aerodynamic resistance in the Penman–Monteith equation to rainfall intensity is proposed to explain the fact that the interception rate exceeds net radiation.  相似文献   

12.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

13.
Hedgerow is one of the most important rural landscapes in the world, especially in Europe. Knowledge about the hydrological role of hedgerows is useful in many fields of study, such as hydrological modelling and rural landscape management. The aim of this study was to investigate the impact of a hedgerow on rainfall distribution, soil-water potential gradient, lateral water transfer and water balance. A hillslope with a hedgerow perpendicular to the slope was monitored. To evaluate hedgerow rainfall interception, rainfall was measured (hourly, daily, and by rainfall event) both next to and up to 16 m upslope and 12 m downslope perpendicularly away from the hedgerow. The strongest correlation between rainfall next to the hedgerow and rainfall at more distant points was obtained using data measured per rainfall event. The average percentage of rainfall intercepted equalled 28% for the leafed period and 12% for the leafless period. The impact of the hedgerow on spatial rainfall distribution was related to distance from the hedgerow and rainfall amount. Annual distribution of soil-water potential showed that the hedgerow influenced it up to 9 m upslope and 6 m downslope, the area in which most of the hedgerow's roots were observed. The soil was driest at the end of summer, which delayed soil rewetting during autumn in areas surrounding the hedgerow. Annual groundwater dynamics exhibited three distinct periods due to temporal rainfall distribution and, especially at the end of summer, root-water uptake. In addition, the total potential gradient showed that unsaturated flow was directed towards the hedgerow in summer and autumn. These results indicate that at the local scale hedgerows influences (1) spatial rainfall distribution, (2) soil rewetting, and (3) groundwater recharge, often at distances well beyond the hedgerow's drip line. Consequently, the processes involved in soil-water dynamics around hedgerows should be integrated into relevant hydrological models, especially for catchments with a dense hedgerow network. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
An increasing number of studies have examined the effects of various biotic and abiotic factors on stemflow production. Of those that have ascribed the importance of canopy structure to stemflow production, there has been a bias towards field studies. Coupling Bayesian inference with the NIED (National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan) large-scale rainfall simulator, this study leveraged a unique opportunity to control rainfall amounts and intensities to pinpoint the canopy structural metrics that differentially influence stemflow funnelling ratios for three common tree species between leafed and leafless canopy states. For the first time, we examined whether canopy structure metrics exert a static control on stemflow funnelling ratios or whether different elements of canopy structure are more or less important under leafed or leafless states, thereby allowing us to determine if tacit assumptions about the static influence of canopy structure on stemflow production (and funnelling) are valid (or not). Rainfall simulations were conducted at 15, 20, 30, 40, 50, and 100 mm h−1 under both leafed and leafless tree conditions (12 simulations in total) to detect any differential effects on the presence or absence of foliage on stemflow funnelling ratios. For leafed conditions, the highest percentages of best-fitting models (ΔDIC ≤2) indicated that stemflow funnelling ratios were mainly controlled by total dry aboveground biomass (Ball), diameter at breast height (DBH), total dry foliar biomass (Bf), tree height (H), and woody to foliar dry biomass ratio (BR). Whilst for the leafless state, the highest percentages of best-fitting models (ΔDIC ≤2) indicated that total dry branch biomass (Bbr) was relatively dominant as was the interaction effects between crown projection area and species (CPA:species). These results compel us to reject any assumption of a static effect of different elements of canopy structure on stemflow funnelling.  相似文献   

15.
T. Toba  T. Ohta 《水文研究》2008,22(14):2634-2643
To elucidate the factors involved in interception loss, we conducted experiments in which we measured environmental variables such as rainfall intensity, forest structure, and weather conditions. An artificial forest consisting of 24 vinyl trees was used to examine the influences of forest structure and rainfall conditions on interception loss. The interception rate was higher at higher plant area index (PAI) values and wind speeds and lower with greater rainfall intensity. We confirmed the factors affecting interception loss by using an interception model based on the tank model. The artificial forest simulations provide new evidence that interception loss is influenced by the PAI, rainfall intensity, saturation deficit, and wind speed. The effect of the saturation deficit on the interception rate was unclear from the experimental results, but the single‐tank model revealed that wind speed strongly influences the effects of the saturation deficit on interception loss. Thus, whereas interception loss was not significantly affected by the saturation deficit at low wind speeds, it increased significantly with the saturation deficit under windy conditions. The model simulation also showed the sensitivity of each factor with regard to the interception rate. The sensitivity of rainfall intensity decreased as the PAI increased, and the sensitivity of the saturation deficit increased as the wind speed increased. The experiments and model calculations clarified the main elements affecting interception loss and their sensitivities. Compared with previous studies on interception loss, this study revealed a positive relationship between the PAI and interception loss, a negative exponential relationship with rainfall intensity, and the effects of the saturation deficit on interception loss. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

17.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

18.
19.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

20.
Interception is one of the most underestimated processes of the hydrological cycle. However, it amounts to a substantial part of the terrestrial evaporation and forms a direct feedback of moisture to the atmosphere which is important to sustain continental rainfall. Most investigations on interception focus on canopy interception only, whereas the interception by the surface and forest floor may be of same order of magnitude. Moreover there is a regional bias. Most research has been carried out in Europe and America and little is known about interception in Africa. This paper presents a study on forest floor and canopy interception in a savannah ecosystem. The study deals with both interception storage capacity of different vegetation types and the related moisture fluxes. The interception storage capacity of Msasa leaf litter and of Thatching grass is 1.8 mm and 1.5 mm respectively. This water storage capacity is dependent on storm intensity, with high intensity storms resulting in smaller storage capacity than less intensive storms. Canopy interception for the study period averaged 25% of the total rainfall, which is comparable with other studies. More importantly, the study revealed that combining canopy and forest floor interception yields a total interception flux amounting to 37% of the rainfall, or close to 50% of the total evaporation. This is a significant amount which implies that interception of both canopy and forest floor should be included in hydrological modelling and that interception is relevant for water management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号