首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of Ni2SiO4 in both olivine and spinel phases have been compressed to pressures above 140 kbar in a diamond-anvil cell and heated to temperatures of 1400–1800°C using a continuous YAG laser. After quenching and releasing pressure, X-ray diffraction examination indicates that the samples disproportionate to a mixture of stishovite (SiO2) and bunsenite (NiO) at pressures between 140 and 190 kbar. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating. However, thermodynamic calculations suggest that the transition pressure is about 192 ± 4 kbar at 1545°C and that the equation of the spinel-mixed oxides phase boundary isP(kbar) = 121 + (0.046 ± 0.020) T (°C).  相似文献   

2.
High temperature calorimetric measurements of the enthalpies of solution in molten if2 PbO · B2O3 of α- and γ-Fe2SiO4 and α-, β-, and γ-Co2SiO4 permit the calculation of phase relations at high pressure and temperature. The reported triple point involving α-, β-, and γ-Co2SiO4 is confirmed to represent stable equilibrium. The curvature in the α?β phase boundary in Co2SiO4 and of an α?γ boundary in Fe2SiO4 at high temperature is explained in part by the effects of compressibility and thermal expansion, but better agreement with the observed phase diagram is obtained when one considers the effect of small amounts of cation disorder in the spinel and/or modified spinel phases. The calculated ΔH0 and ΔS0 values for the α?β, α?γ, and β?γ transitions show that enthalpy and en changes both vary strongly in the series Mg, Fe, Co, and Ni, and are of equal importance in determining the stability relations. The disproportionation of Fe2SiO4 and Co2SiO4 spinel to rocksalt plus stishovite is calculated to occur in the 170–190 kbar region; cation disorder and/or changes in wüstite stoichiometry can affect the P?T slope. The calorimetric data for CoSiO3 and FeSiO3 are in good agreement with the observed phase boundary for pyroxene formation from olivine and quartz. The decomposition of pyroxene to spinel and stishovite at pressures near the coesite-stishovite transition is predicted in both iron and cobalt systems. The use of calorimetric data, obtained from small samples of high pressure phases, is very useful in predicting equilibrium phase diagrams in the 50–300 kbar range.  相似文献   

3.
The high pressure spinel polymorph of Ni2SiO4 persists metastably at 713°C and atmospheric pressure. The enthalpy of the olivine-spinel transition was obtained by measuring the heats of solution of both polymorphs in a molten oxide solvent, 2PbO · B2O3, at that temperature. For Ni2SiO4(ol)→Ni2SiO4, ΔH9860 = +1.4 ± 0.7kcal/mol. The heat content increments, H986 ? H297, were found to be: olivine, 25.73 ± 0.42kcal/mol, and spinel, 25.39 ± 0.20kcal/mol. The measured enthalpy of the transformation is consistent with the low slope of the phase boundary, ?P/?T = ~ 12b/deg, observed by Akimoto and others. The entropy of the olivine-spinel transition in Ni2SiO4 is accordingly about a factor of three smaller in magnitude (ΔS = ~ ?1cal/deg mol) than that for Co2SiO4,Fe2SiO4,Mg2SiO4or Mg2GeO4 (ΔS = ?3to?3.5cal/deg mol).  相似文献   

4.
The enthalpies of formation from the oxides of Mg2SnO4 and Co2SnO4 were found by oxide melt solution calorimetry to be +1.13 ± 0.48 kcal/mol and ?2.31 ± 0.28 kcal/mol, respectively. Using these data, the slopes, ?P/?T, for disproportionation of these spinels to the component oxides at high pressure were calculated to be +30.4 ± 4.2 bar/K for Mg2SnO4 and ?10.3 ± 2.4 bar/K for Co2SnO4, in general agreement with the data of Jackson et al. (1974a,b). Using thermochemical data for the formation of olivines, for olivine-spinel transitions and for the transformation of quartz to stishovite, we calculate pressures for the disproportionation of silicate spinels to be in the range 150–200 kbar. Calculated slopes ?P/?T for the disproportionation reactions are ?10.7, ?24.9, ?11.2, and +7.6 bar/K for Mg2SiO4, Fe2SiO4, Co2SiO4, and Ni2SiO4. The large negative slope calculated for Fe2SiO4 results from a surprisingly large positive slope reported for the olivine-spinel transition in that compound (Akimoto et al., 1969). Further consideration of the systematic trends in the thermodynamics of spinel formation from the oxides suggests that the silicate spinels should have entropies of formation close to zero, resulting in values of ?P/?T which are zero or at most only slightly negative. This confirms the conclusion of Jackson, Liebermann, and Ringwood that values of ?P/?T for spinel disproportionation are unlikely to be more negative than ?10 bar/K and may well be slightly positive. Reaction of spinels to form other post-spinel phases, particularly ilmenite and perovskite, are discussed in terms of available thermochemical data.  相似文献   

5.
Magnesium orthosilicate with spinel structure (γ-Mg2SiO4) was synthesized at about 250 kbar and 1000°C. Unit cell dimension was established to be 8.076 ± 0.001Å. X-ray powder diffraction pattern revealed a significant difference between γ-Mg2SiO4 and other γ-M2SiO4 spinels (M = Fe, Co, and Ni) in the intensities of (111) and (331) reflections, both of which are virtually absent in the Mg2SiO4 spinel. This feature could be thoroughly understood by the calculation of the intensities for several silicate spinels.  相似文献   

6.
Experimental study of the phase boundary for the disproportionation of the inverse spinel Mg2SnO4 into its isochemical mixed oxides indicates a slope dP/dT = 40 ± 10bars/°K. This positive slope is consistent with the large entropies of inverse (relative to normal) spinels predicted from high-temperature entropy-molar volume systematics. Thermodynamic data do not support the existence of a distinctly negative slope for the proposed disproportionation of Mg2SiO4 normal spinel. Evidence from X-ray and phase equilibria studies suggests the possibility that Si4+, Mg2+, and Fe2+ share the octahedral sites in silicate spinels under mantle conditions. The consequences of this partial inverse character are a positive slope for the postulated spinel-mixed oxide phase boundary near 650 km depth, removal of a widely accepted constraint on mantle-wide convection, and anomalous elasticity-density behaviour within the transition zone.  相似文献   

7.
Pressure effects on the lattice parameters of β- and γ-Mg2SiO4 have been measured at room temperature and at pressures up to 100 kbar using a multi-anvil high-pressure X-ray diffraction apparatus. The volume changes (ΔV/V0) at 90 kbar are 5.4 · 10?2 and 4.2 · 10?2 for β- and γ-Mg2SiO4, respectively. Isothermal bulk moduli at zero pressure have been calculated from least-square fits of the data to straight lines. They turn out to be 1.66 ± 0.4 and 2.13 ± 0.1 Mbar for β- and γ-Mg2SiO4, respectively. The α → γ transition obeys Wang's linear Vφ?ρ relation but the αβ transition does not.  相似文献   

8.
To calculate accurately the pressure interval and mineral proportions (i.e. yields) across the olivine to wadsleyite and wadsleyite to ringwoodite transformations requires a detailed knowledge of the non-ideality of Fe-Mg mixing in these (Mg,Fe)2SiO4 solid solutions. In order to constrain the activity-composition relations that describe non-ideal mixing, Fe-Mg partitioning experiments have been conducted between magnesiowüstite and (Mg,Fe)2SiO4 olivine, wadsleyite and ringwoodite as a function of pressure at 1400°C. Using known activity-composition relations for magnesiowüstite the corresponding relations for the three polymorphs were determined from the partitioning data. In all experiments the presence of metallic iron ensured redox conditions compatible with the Earth’s transition zone. The non-ideality of the (Mg,Fe)2SiO4 solid solutions was found to decrease in the order WwadsleyiteFeMg>WringwooditeFeMg>WolivineFeMg. These partitioning data were used, along with published phase equilibria measurements for the Mg2SiO4 and Fe2SiO4 end-member transformations, to produce an internally consistent thermodynamic model for the Mg2SiO4-Fe2SiO4 system at 1400°C. Using this model the pressure interval of the olivine to wadsleyite transformation is calculated to be significantly smaller than previous determinations. By combining these results with Fe-Mg partitioning data for garnet, the widths of transition zone phase transformations in a peridotite composition were calculated. The olivine to wadsleyite transformation at 1400°C in dry peridotite was found to occur over a pressure interval equivalent to approximately 6 km depth and the mineral yields were found to vary almost linearly with depth across the transformation. This transformation is likely to be even sharper at higher temperatures or could be significantly broader in wet mantle or in regions with a significant vertical component of mantle flow. The entire range of estimated widths for the 410 km discontinuity (4-35 km) could, therefore, be explained by the olivine to wadsleyite transformation in a peridotite composition over a range of quite plausible mantle temperatures and H2O contents. The wadsleyite to ringwoodite transformation in peridotite mantle was calculated to take place over an interval of 20 km at 1400°C. This transformation yield was also found to be near linear.  相似文献   

9.
The melting curve of forsterite has been studied by static experiment up to a pressure of 15 GPa. Forsterite melts congruently at least up to 12.7 GPa. The congruent melting temperature is expressed by the Kraut-Kennedy equation in the following form: Tm(K)=2163 (1+3.0(V0 ? V)/V0), where the volume change with pressure was calculated by the Birch-Managhan equation of state with the isothermal bulk modulus K0 = 125.4 GPa and its pressure derivative K′ = 5.33. The triple point of forsterite-β-Mg2SiO4-liquid will be located at about 2600°C and 20 GPa, assuming that congruent melting persists up to the limit of the stability field of forsterite. The extrapolation of the previous melting data on enstatite and periclase indicates that the eutectic composition of the forsterite-enstatite system should shift toward the forsterite component with increasing pressure, and there is a possibility of incongruent melting of forsterite into periclase and liquid at higher pressure, although no evidence on incongruent melting has been obtained in the present experiment.  相似文献   

10.
Two synthetic pyroxenes (FeSiO3, MgSiO3) and five natural pyroxenes with compositions of about Fs80En20, Fs60En40, Fs50En50, Fs40En60, and Fs20En80 have been subjected to pressures up to250 ± 50kbars at a temperature of about1500 ± 200°C in a diamond anvil cell heated by an infrared laser beam. After quenching and unloading X-ray data analysis indicates that (1) those with Mg less than 50% undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure, and (2) those with Mg higher than 60%, undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)SiO3 (hexagonal phase) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure.  相似文献   

11.
The high-pressure and temperature phase transformations of MgSiO3 have been investigated in a diamond-anvil cell coupled with laser heating from 150 to 300 kbar at 1000–1400°C. X-ray diffraction study of the quenched samples reveals that the sequence of phase transformations for this compound is clinoenstatite → β-Mg2SiO4 plus stishovite → Mg2SiO4(spinel) plus stishovite → ilmenite phase → perovskite phase with increasing pressure. The hexagonal form of MgSiO3 observed by Kawai et al. is demonstrated to have the ilmenite structure and the “hexagonal form” of MgSiO3 observed by Ming and Bassett is shown to be predominantly the orthorhombic perovskite phase plus the ilmenite phase. The mixture of oxides, periclase plus stishovite, reported by Ming and Bassett was not observed in this study. The very wide stability field for the ilmenite phase of MgSiO3 found in this study suggests that this phase is of importance in connection with the observed rapid increase of velocity in the transition zone of the earth's mantle. On the basis of the extremely dense-packed structure of the perovskite phase of MgSiO3, this phase should be the most important component for the lower mantle.  相似文献   

12.
A new phase which is much denser than the component oxides of spinel (MgAl2O4) was synthesised at loading pressures greater than 250 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. The new phase (ε-MgAl2O4) was indexed on the basis of an orthorhombic cell with a = 8.507 ± 0.004, b = 2.740 ± 0.003, c = 9.407 ± 0.005Å, and Z = 4 at room temperature and 1 bar pressure. Thus the molar volume for ε-MgAl2O4 at the above conditions was calculated to be 33.01 ± 0.07 cm3, which is 10.3% less than that of the mixture corundum plus periclase. The dense phase of spinel found in shock-wave experiments can be reasonably interpreted as ε-MgAl2O4, and this may be a potentially important mineral component of the earth's lower mantle. The new structure may also provide a possible candidate for the dense phases of Fe3O4 and Mg2SiO4 which were found by shock experiments.  相似文献   

13.
In a diamond-anvil press coupled with YAG laser heating, the spinels of Co2GeO4 and Ni2GeO4 have been found to disproportionate into their isochemical oxide mixtures at about 250 kbar and 1400–1800°C in the same manner as their silicate analogues. At about the same P-T conditions MnGeO3 transforms to the orthorhombic perovskite structure (space group Pbnm); the lattice parameters at room temperature and 1 bar are a0 = 5.084 ± 0.002, b0 = 5.214 ± 0.002, and c0 = 7.323 ± 0.003Å with Z = 4 for the perovskite phase. The zero-pressure volume change associated with the ilmenite-perovskite phase transition in MnGeO3 is ?6.6%. Mn2GeO4 disproportionates into a mixture of the perovskite phase of MnGeO3 plus the rocksalt phase of MnO at P = 250kbar and T = 1400–1800°C. The concept of utilizing germanates as high-pressure models for silicates is valid in general. The results of this study support the previous conclusion that the lower mantle comprises predominantly the orthorhombic perovskite phase of ferromagnesian silicate.  相似文献   

14.
The β-phase, spinelloid polymorph of (Mg, Fe)2SiO4 makes up a major part of the transition of the Earth's mantle. Naturally occurring β-(Mg, Fe)2SiO4 wadsleyite, from the Peace River meteorite was found to carry a variety of stacking faults, the nature of which have been studied using high resolution transmission electron microscopy. The faults lie on (010) and are generally of a complex nature, best described in terms of various stacking sequences of the component spinelloid units. The stacking faults locally transform the cation distribution, so that in the plane of the fault the structure is that of spinel. The development of such stacking faults is consequently a significant feature of the martensitic transformation of spinel to β-phase. The possible occurrence of transformation enhanced plasticity associated with this inversion is discussed, and the probable deformation mechanisms of β-(Mg, Fe)2SiO4 are outlined.  相似文献   

15.
Ferromagnesian silicate olivines, pyroxenes and garnets with Mg/(Mg + Fe)?0.3 (molar) have been found to transform to high-pressure phases characterized by the orthorhombic perovskite structure when compressed to pressures above 250 kbar in a diamond-anvil press and heated to temperatures above 1,000°C with a YAG laser. The zero-pressure density of the perovskite phase of (Mg,Fe)SiO3 is about 3–4% greater than that of the close-packed oxides, rocksalt plus stishovite. For (Mg,Fe)2SiO4 compounds, the perovskite plus rocksalt phase assemblage is 2–3% denser than the mixed oxides. The experimental synthesis of such high-density perovskite phases in olivine, pyroxene and garnet compounds suggests that (Mg,Fe)SiO3-perovskite is the dominant mineral phase in the earth's lower mantle.  相似文献   

16.
Phase equilibria in a natural garnet lherzolite nodule (PHN 1611) from Lesotho kimberlite and its chemical analogue have been studied in the pressure range 45–205 kbar and in the temperature range 1050–1200°C. Partition of elements, particularly Mg2+Fe2+, among coexisting minerals at varying pressures has also been examined. High-pressure transformations of olivine(α) to spinel(γ) through modified spinel(β) were confirmed in the garnet lherzolite. The transformation behavior is quite consistent with the information previously accumulated for the simple system Mg2SiO4Fe2SiO4. At pressures of 50–150 kbar, a continuous increase in the solid solubility of the pyroxene component in garnet was demonstrated in the lherzolite system by means of microprobe analyses. At 45–75 kbar and 1200°C, the Fe2+/(Mg + Fe2+) value becomes greater in the ascending order orthopyroxene, Ca-rich clinopyroxene, olivine and garnet. At 144–146 kbar and 1200°C, garnet exhibits the highest Fe2+/(Mg + Fe2+) value; modified spinel(β) and Ca-poor clinopyroxene follow it. When the modified spinel(β)-spinel(γ) transformation occurred, a higher concentration of Fe2+ was found in spinel(γ) rather than in garnet. As a result of the change in the Mg2+Fe2+ partition relation among coexisting minerals, an increase of about 1% in the Fe2SiO4 component in (Mg,Fe)2SiO4 modified spinel and spinel was observed compared with olivine.These experimental results strongly suggest that the olivine(α)-modified spinel(β) transformation is responsible for the seismic discontinuity at depths of 380–410 km in the mantle. They also support the idea that the minor seismic discontinuity around 520 km is due to the superposition effect of two types of phase transformation, i.e. the modified spinel(β)-spinel(γ) transformation and the pyroxene-garnet transformation. Mineral assemblages in the upper mantle and the upper half of the transition zone are given as a function of depth for the following regions: 100–150, 150–380, 380–410, 410–500, 500–600 and 600–650 km.  相似文献   

17.
The melting curves of the structural analogues SiO 2, BeF 2 and GeO 2 have been studied at pressures ?40 kbar in a piston-cylinder apparatus. The initial slopes dTm/dP of the β-quartz-liquid boundaries for SiO 2 and BeF 2 are ~35° while the slope of the rutile-liquid boundary for GeO 2 is approximately 32°C/kbar. These large values of dT/dP reflect the unusually low entropies of fusion for these compounds in which strong structural similarities exist between the crystalline phases and the melt. Implications for the extended phase diagram of silica are discussed and it is concluded that either: (1) a maximum exists on the coesite melting curve, or (2) estimates of the melting temperature of stishovite need to be revised upwards.  相似文献   

18.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

19.
High-pressure stability relations in cobalt and nickel silicates have been studied over the pressure range 130–330 kbar employing a double-staged split-sphere-type high-pressure apparatus.γ-Co2SiO4 and γ-Ni2SiO4 decompose directly into their constituent oxide mixtures (rocksalt plus stishovite) 175 kbar and 280 kbar, respectively. The result that γ-Ni2SiO4 has a wider stability field in pressure than γ-Co2SiO4, is consistent with simple crystal-field theory.The experimental precision is high enough to show that the decomposition boundary of γ-Co2SiO4 has a positive slope (dP/dT > 0) and a preliminary determination of the boundary curve is P(kbar) = 0.065 T (°C) + 110.No positive evidence for the existence of high-pressure forms of CoSiO3 and NiSiO3 has been obtained in these quenching experiments, and they finally decompose into constituent oxide mixtures as in the cases of orthosilicates.  相似文献   

20.
FAMOUS basalt 527-1-1 (a high-Mg oceanic pillow basalt) has three generations of spinel which can be distinguished petrographically and chemically. The first generation (Group I) have reaction coronas and are high in Al2O3. The second generation (Group II) have no reaction coronas and are high in Cr2O3 and the third generation (Group III) are small, late-stage spinels with intermediate Al2O3 and Cr2O3. Experimental synthesis of spinels from fused rock powder of this basalt was carried out at temperatures of 1175–1270°C and oxygen fugacities of 10?5.5 to 10?10 atm at 1 atm pressure. Spinel is the liquidus phase at oxygen fugacities of 10?8.5 atm and higher but it does not crystallize at any temperature at oxygen fugacities less than 10?9.5. The composition of our spinels synthesized at 1230–1250°C and 10?9 atmfO2 are most similar to the high-Cr spinels (Group II) found in the rock. Spinels synthesized at 1200°C and 10?8.5 atmO2 are chemically similar to the Group III spinels in 527-1-1. We did not synthesize spinel at any temperature or oxygen fugacity that are similar to the high-Al (Group I) spinel found in 527-1-1. These results indicate that the high-Cr (Group II) spinel is the liquidus phase in 527-1-1 at low pressure and Group III spinel crystallize below the liquidus (~1200°C) after eruption of the basalt on the sea floor. The high-Al spinel (Group I) could have crystallized at high pressure or from a magma enriched in Al and perhaps Mg compared to 527-1-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号