首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《水文科学杂志》2013,58(6):1105-1120
Abstract

Under the European Union Water Framework Directive, Member States must put in place a river basin planning framework to determine what measures are necessary to maintain and improve the ecological status for all surface water bodies. The governmental organisations legally responsible for implementing the Directive in the UK have recognised that an appropriate river flow regime is fundamental to maintain a healthy river and, as a result, they need to regulate abstractions and effluent discharges and ensure sufficient water is released from impoundments. This paper reports on the process of producing environmental standards that define the maximum abstraction allowable from UK rivers, to leave sufficient flow to maintain a healthy river ecosystem. As there are currently insufficient data available to determine the relationships between river flow and ecological status empirically, expert knowledge was captured through a series of workshops at which leading UK freshwater scientists defined maximum levels of river flow regime alteration that would achieve ecological objectives for different river water body types. For the least ecologically sensitive rivers, maximum abstractions in the range 15–35% of the natural flow were proposed, depending on the flow magnitude and time of year. For the most sensitive rivers, the maximum abstraction proposed was in the range 7.5–25%. The knowledge was used by the responsible UK authorities to develop environmental standards. The authorities subsequently used the environmental standards to determine regulatory standards that could be implemented within practical constraints and current licensing policies.  相似文献   

2.
The Caspian Sea (CS), the world's largest inland sea, may also be considered as large-scale limnic system. Due to strong fluctuations of its water level during the 20th century and the flooding of vast areas in a highly vulnerable coastal zone, economic and environmental risk potentials have to be considered. Since the major water input into the CS is attributed to the Volga river, the understanding of its long-term flow process is necessary for an appropriate risk assessment for the CS and its coastal area. Therefore, a top-down approach based on statistical analyses of long-term Volga flow series is pursued. For the series of annual mean flow (MQ) of the Volga river basin during the 20th century, a complex oscillation pattern was identified. Analyses for multiple gauges in the Volga river basin and Eurasian reference basins revealed that this oscillation pattern resulted from the superposition of oscillations with periods of ∼30 years (MQ) in the western part of the Volga river basin, and ∼14 years (flow volume of snowmelt events) and ∼20 years (flow volume of summer and autumn) in the eastern part of the Volga river basin (Kama river basin). Almost synchronous minima or maxima of these oscillations occurred just in the periods of substantial changes of the Caspian Sea level (CSL). It can thus be assumed that the described mechanism is fundamental for an understanding of the CSL development during the 20th century. Regarding the global climate change, it is still difficult to predict reliably the development of the CSL for the 21st century. Consequently, we suggest an ongoing, interdisciplinary research co-operation among climatology, hydrology, hydraulics, ecology and spatial data management.  相似文献   

3.
Shil'krot  G. S.  Yasinskii  S. V. 《Water Resources》2002,29(3):312-318
Regularities of the formation of biogenic elements flow and water quality in the Istra River (downstream of the Istrinskoye Reservoir) and its tributaries are revealed. Temporal variability in water quality parameters is shown to be closely related to fluctuations in the river water abundance, whereas spatial variability is determined by different intensity of anthropogenic load on river watersheds. It was found that the mean annual (for the period of 1991–1995) concentrations of nitrogen and phosphorus mineral compounds do not always meet the requirements of drinking water supply. A method of estimating the environmental state of the main river, taking into account biogenic elements input from its basin is suggested.  相似文献   

4.
Reservoirs impose many negative impacts on riverine ecosystems. To balance human and ecosystem needs, we propose a reservoir operation method that combines reservoir operating rule curves with the regulated minimum water release policy to meet the environmental flow requirements of riverine ecosystems. Based on the relative positions of the reservoir and the water intakes, we consider three scenarios: water used for human needs (including industrial, domestic and agricultural) is directly withdrawn from (1) the reservoir; (2) both reservoirs and downstream river channels and (3) downstream river. The proposed method offers two advantages over traditional methods: First, it can be applied to finding the optimal reservoir operating rule curves with the consideration of environmental flow requirement, which is beneficial to the sustainable water uses. Second, it avoids a problem with traditional approaches, which prescribe the minimum environmental flow requirements as the regulated minimum environmental flow releases from reservoirs, implicitly giving lower priority to the riverine ecosystem. Our method instead determines the optimal regulated minimum releases of water to sustain environmental flows while more effectively balancing human and ecosystem needs. To demonstrate practical use of the model, we present a case study for operation of the Tanghe reservoir in China's Tang river basin for the three above‐mentioned scenarios. The results demonstrate that this approach will help the reservoir's managers satisfy both human and environmental requirements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
This paper studies one of the most important problems of dry countries that are confronted with water deficit and the competition of rivals to allocate water. Some common methods have been investigated for computing the minimum water requirement to save a river's biological activity. After a discussion of the currently used method in Iran (the Tenant Method), the application of some other methods, which are known as Hydraulic and Hydrological Methods, is illustrated. The case study is a river in the northern part of Iran and this research addresses the critical situation of this river in near future regarding the planned anthropogenic alteration and its consequences. It has been shown that the application of environmental water allocation methods that have no background in a region could be misleading. The first proposed method is the Texas Method, in which flexibility in water allocation helps to develop an integrated river management paradigm in the study area. The second preferred method is a Hydraulic Method, by which the implementation of morphological parameters or flow geometrical properties could sustain physical habitat within an acceptable range in terms of depth, width, velocity, and bed shear stress. In the case study, the Maximum Curvature Method was superior to the Slope Method. The investigation revealed that using a widely recommended slope of 1 for the discharge‐wetted perimeter function can lead to an overestimated and unacceptable discharge. The Tenant Method in respect to minimum environmental flow requirement yielded the weakest result, and it has been illustrated that its application might impose irrecoverable shock to the ecosystem. The Flow Duration Curve Method (the Q95 Method), in spite of its subjectivity, showed more compatibility with the river's condition in comparison with the Tenant Method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Equatorial rivers of East Africa exhibit unusually complex seasonal and inter-annual flow regimes, and aquatic and adjacent terrestrial organisms have adapted to cope with this flow variability. This study examined the annual flow regime over the past 40 years for three gauging stations on the Mara River in Kenya and Tanzania, which is of international importance because it is the only perennial river traversing the Mara-Serengeti ecoregion. Select environmental flow components were quantified and converted to ecologically relevant hydraulic variables. Vegetation, macroinvertebrates, and fish were collected and identified at target study sites during low and high flows. The results were compared with available knowledge of the life histories and flow sensitivities of the riverine communities to infer flow–ecology relationships. Management implications are discussed, including the need to preserve a dynamic environmental flow regime to protect ecosystems in the region. The results for the Mara may serve as a useful model for river basins of the wider equatorial East Africa region.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

8.
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.  相似文献   

9.
There is global concern about headwater management and associated impacts on river flow. In many wet temperate zones peatlands can be found covering headwater catchments. In the UK there is major concern about how environmental change, driven by human interventions, has altered the surface cover of headwater blanket peatlands. However, the impact of such land‐cover changes on river flow is poorly understood. In particular, there is poor understanding of the impacts of different spatial configurations of bare peat or well‐vegetated, restored peat on river flow peaks in upland catchments. In this paper, a physically based, distributed and continuous catchment hydrological model was developed to explore such impacts. The original TOPMODEL, with its process representation being suitable for blanket peat catchments, was utilized as a prototype acting as the basis for the new model. The equations were downscaled from the catchment level to the cell level. The runoff produced by each cell is divided into subsurface flow and saturation‐excess overland flow before an overland flow calculation takes place. A new overland flow module with a set of detailed stochastic algorithms representing overland flow routing and re‐infiltration mechanisms was created to simulate saturation‐excess overland flow movement. The new model was tested in the Trout Beck catchment of the North Pennines of England and found to work well in this catchment. The influence of land cover on surface roughness could be explicitly represented in the model and the model was found to be sensitive to land cover. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Consideration of environmental flows in river basin management poses great challenges. Environmental flows are interpreted as the natural or regulated releases of water needed in a river to maintain specified valued features of the river ecosystems. This has never been considered explicitly in water resources management of a river basin. An attempt is, therefore, made here to reflect the perception and implications of environmental flows in water resources management. Assessment approaches are reviewed in the context of flow characteristics of a river system and recommendations are put forward on what is to be done to adopt this new concept in practice.  相似文献   

11.
Abstract

An important characteristic of a river flow regime type is the time of year when high and low flows are likely to occur. How likely is it, however, to observe an identified seasonal pattern each individual year? Stability is an often neglected property of a flow regime, though shifts in the seasonal behaviour of flows affect both environmental and economic activities. An approach to characterize objectively the stability of a flow regime type, based on the concept of entropy, is presented. The stabilities of river flow maxima and minima are studied separately to investigate their respective contributions to the stability character of a particular regime type. A quantitative “instability index” permits a study of the development of a flow regime's stability in time, especially important in the context of a possible climate change. The method is presented using the example of a quantitative flow regime classification developed for Scandinavia and western Europe.  相似文献   

12.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

13.
Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north‐western Australia. Synoptic regional‐scale sampling of both river water and groundwater for a suite of environmental tracers (4He, 87Sr/86Sr, 222Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow “local” groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high‐flow events, and old “regional” groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background 222Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types—including stable and radioactive isotopes, dissolved gases and major ions—can significantly improve conceptualization of groundwater—surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings.  相似文献   

14.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

15.
《水文科学杂志》2013,58(6):1068-1078
Abstract

The study aims to set and implement environmentally relevant limits for the exploitation of mountain streams in the Kura River basin of Azerbaijan. Such streams represent the preferred spawning grounds for valuable sturgeon of the Caspian Sea, but experience continuously increasing exploitation in the form of water withdrawals for industry and irrigation. Since no detailed environmental flow assessments have been conducted on any of the Kura basin streams, an interim approach is suggested based on minimum flow, referred to as “base environmental minimum”. The latter may be estimated from the unregulated parts of observed or simulated daily flow records. Environmental flow requirements for individual months of an individual year may be calculated using correction factors related to monthly rainfall. Simple relationships are suggested for base environmental flow estimation at ungauged sites, and the implications of river pollution for monthly environmental requirements are examined. Further, definition of environmentally critical periods in a stream is proposed based on a ratio of observed to “environmental” flow as an indicator of environmental stress. It is illustrated that the conjunctive use of several closely located streams for water supply may significantly reduce the duration of, or completely eliminate, environmentally critical periods. The idea of environmentally acceptable areal water withdrawal is formulated, so that the overall approach may be applied for environmentally sustainable water withdrawal management in other small streams.  相似文献   

16.
17.
Abstract

Environmental flows have scarcely been considered in river water management in Bangladesh. This study attempts to assess the environmental flow requirements in the Halda River, Bangladesh. Thus, the objectives are to estimate the Halda River flow with different return periods/probabilities, which was done using the log-Pearson Type III distribution (LPIII), and to mitigate the environmental problems in the Halda River using the building block method. The LPIII distribution was used to estimate the expected extreme and satisfactory flows for fish habitat at Panchpukuria station and the expected extreme water levels at Panchpukuria, Narayanhat, Telpari and Enayethat stations. It was found that floods are likely to occur at least once in 2.1, 1.02, 1.75 and 1.25 years at Panchpukuria, Narayanhat, Telpari and Enayethat stations, respectively. The results of flow and water quality analyses suggest that environmental flow requirements cannot be achieved in this river throughout the year. The environmental flow requirements and conservation of fish resources can be achieved by implementing the suggestions provided in conjunction with a comprehensive awareness programme, investigations and trade-off analyses being among the suggestions.

Editor Z.W. Kundzewicz; Associate editor B. Sivakumar

Citation Akter, A. and Ali, Md. H., 2012. Environmental flow requirements assessment in the Halda River, Bangladesh. Hydrological Sciences Journal, 57 (2), 326–343.  相似文献   

18.
1GENERALTraditionally,theLowerYellowRiverstartsatHuayuankouandrunsonaplainforabout800km,beforeemptyingintotheBohaiSea.Theriverisfedwithextremelyheavysedimentload(1.6billiontonsannuallyuptotheeighties)andrelativelysmallrunoff(46billionm3uptotheeighties)fromitsdrainagebasinupstream.Thisloadofsedimentispartlydepositedinthechannelresultinginaggradationorincreaseinthebedslope.TheremainderisdischargedtotheBobalSea.AsthetidesoftheBohaiSeaareweak,thedepositionintheareaaroundtherivermouthisusual…  相似文献   

19.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

20.
水闸建设对河流产生阻隔作用,改变了河段水流形态,污染物输运及水质时空分布也随之发生改变,进而可能对水环境容量产生影响。本研究以拉萨河城区段为研究对象,考虑水闸建设对水动力学条件的影响,在利用平面二维模型进行水动力-水质模拟的基础上,计算分析了水闸建设前、后COD的水环境容量,探讨了连续水闸建设对河流水环境容量的影响。研究成果表明,水闸修建对水环境容量的影响主要有两个方面:一是水闸蓄水后,水体由流动转变为相对静止的状态,闸前水流流速减缓,水深增加,影响污染物的扩散,降低污染物降解系数,进而影响污染物降解过程;二是水闸蓄水会使污染物在库区滞留,使污染物滞留时间增加,从而提高污染物的降解量。拉萨河水闸修建后,因水闸蓄水影响,流速减缓,污染物向河道中央扩散受阻,易聚集于排污侧;与天然河道相比,蓄水区河段平均流速由0.34 m/s下降至0.10m/s,平均水深由0.6 m增大至2.0 m,COD降解系数由0.12 d-1下降至0.04 d-1,下降约67%,污染物滞留时间增大为原来的3倍左右。计算结果表明,在两种影响的综合作用下,1个水闸使研究河段CO...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号