首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cunene Complex is the largest known anorthosite body and outcrops across the border between Angola and South West Africa. Palaeomagnetic results are reported from a traverse across the dark troctolitic facies of the anorthosite in Angola which yielded fifteen sites with two additional sites in gabbro bodies. Fourteen sites are stable to a.f. demagnetisation and a single site in the cumulative border zone of the anorthosite is reversed with respect to the remainder. Twelve sites combine to give a mean direction of D = 259°, I = ?46° (k = 7) with a virtual geomagnetic pole at 255°E and 3°S. The low overall precision is probably due to apparent polar movement during cooling of the Complex. Radiometric data are currently conflicting and imply that the anorthosite has an age between 1100 and 2600 m.y.; the only clear feature to emerge from age studies is a thermal overprinting at ca. 1100 m.y. The directions of magnetisation are shown to be most consistent with an age of ca. 2100 m.y. with cooling through the Curie point continuing to ca. 2000 m.y.A variety of magnetic tests demonstrate that magnetite is the principal remanence carrier in the dark troctolitic anorthosite where it occurs both as discrete grains and as fine rods in plagioclase. Lowrie-Fuller tests suggest that both these components include single domains but results from separated mineral fractions demonstrate that the bulk of the high coercivity remanence resides in magnetite rods within the feldspar.  相似文献   

2.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

3.
A Paleocene granodiorite pluton on Jamaica has been subject to extensive weathering caused by the tropical marine environment of the island. The natural remanence of 29 samples obtained from relatively fresh rock in two localities was found to consist of two components with overlapping coercivity ranges. Alternating field treatment proved ineffective for removing the secondary component without destroying the primary one. Thermal demagnetization of samples from the two localities was more effective and yielded paleomagnetic poles at 14.7°N, 11.6°W and 58.9°N, 15.9°E respectively. These pole positions are different from those available from contemporaneous North American rocks and from poles derived from Jamaican Cretaceous and Upper Miocene rocks. Mineralogical studies showed that the granodiorite has undergone an extensive maghemitization superposed on earlier class 2 deuteric oxidation and related to the weathering process. Some of the titanomaghemite has, however, been converted to titanohematite. Hence although the secondary remanence carried by the former was removable by thermal treatment at 500°C, its part carried by the latter could not be removed without simultaneously destroying the primary remanence carried by the residual titanomagnetite. The observed paleopole positions do not, therefore, represent the true Paleocene geomagnetic field, but suggest that the direction of magnetization of the pluton has been approximately equatorial and was probably acquired in a reversed geomagnetic field. This could be interpreted as having been caused by the behavior of the geomagnetic field during a polarity transition, but a more favorable interpretation appears to be a large anticlockwise tectonic rotation of the islands since the Paleocene.  相似文献   

4.
A paleomagnetic study was made of the granitic rock farsundite, exposed in southern Norway. An objective was to test the contemporaneity of this body with the neighbouring Egersund anorthosite of presumed age about 900 m.y. Two of the nine sites sampled were rejected, as the magnetization was dominantly unstable. At the seven other sites, this unstable component was either absent or it could be equally well removed by AF or thermal demagnetization: after AF treatment, all samples from these sites were left with a very stable remanence, directed steeply upwards. This magnetization was probably acquired at the time of either emplacement or recrystallization of the farsundite. A magnetic test for anisotropy indicated that the stable remanence is misaligned with the ancient Earth's field direction by about 3°, apparently due to layering of the rock fabric. After correction for this anisotropy, the mean direction from the seven sites is D = 341°, I = 82.2°, k = 142, α = 5.0°, corresponding to a paleomagnetic north pole at 43.3°S, 166.0°W, dp = 9.3°, dm = 9.7°, which lies on Spall's European polar wandering curve. The farsundite pole is not significantly different from a pole position based on the Egersund anorthosite, which supports the supposition that the two rock formations are cogenetic.  相似文献   

5.
From a collection of 39 oriented hand-samples at 16 sites, total N.R.M. directions at 12 sites from the Elmina Sandstone (Devonian or possibly Carboniferous) of the Ghana coast fall in a group. Their in-situ mean (D = 334°, I = +1112°) is significantly divergent from the local geomagnetic field, and does not correlate with expected Palaeozoic remanence directions. A bedding-tilt test suggests that the magnetisation is secondary, and comparison with other African data suggests a Mesozoic (possibly Cretaceous) age. The remanence is only partially stable against thermal demagnetisation. The observations are consistent with a remanence originating at the time of faulting, tilting and uplift which marked the beginning of rifting of South America from Africa.  相似文献   

6.
Results are reported from palaeomagnetic samples collected in two traverses across the coast-parallel dyke swarm of southern Greenland. This swarm probably resulted as the consequence of initial rifting between Greenland and Labrador, and a reversal of magnetisation has been found which is correlated on the basis of KAr age determinations (~168 m.y.) with the Mateke event of the Middle Jurassic (Bajocian). All of fifteen sites show significant grouping of directions after a.f. cleaning; three have anomalous directions of magnetisation while the remainder (nine normal, three reversed) give a combined mean direction of D = 336°, I = 66° (α95 = 4.6°) with a palaeomagnetic pole at 191°E, 72°N. The dykes exhibit the same corelation between polarity and deuteric oxidation state as that found in Tertiary volcanics. There is a systematic change in magnetisation across the dyke swarm in south Greenland from normal to anomalous to reversed directions; this is interpreted as due to lateral migration of the response to the regional stress field with time. The pole position lies in the vicinity of Jurassic poles from North America after closing the Labrador Sea according to the reconstruction of Bullard, Everett and Smith, but the scatter of these latter poles precludes a confirmation of this reconstruction for Middle Jurassic and earlier times.  相似文献   

7.
Summary Rock magnetism and magnetostratigraphy of the lower part of the Hadar Formation (Afar, Ethiopia) is presented after analysis of multiple new collection of samples from over 84 horizons. The Hadar Formation is composed of lacustrine, lake margin, fluvial and flood plain sediments and known for important Pliocene vertebrate faunas including Australopithecus afarensis. Hysteresis measurements, thermomagnetic analysis, growth and decay of isothermal remanent magnetisation are used to unravel the complex magnetic mineralogy of the different representative lithologies. Ferrimagnetic minerals of magnetite or titanomagnetite in composition, in the stable pseudo-single domain (PSD) size range are found to be the main carriers of the remanence. In most sites the characteristic remanence was isolated using stepwise thermal demagnetisation. The overall mean direction for about 72 horizons (434 samples) is D=358·6°, I=7° (k=17·9, α95=4°) implying some 14° of inclination shallowing, related to sediment compaction due to the very rapid sedimentation history of the site. Five successive polarity zones (N1-R1-N2-R2-N3) are identified and correlation with the lower Gauss chron of the astronomically calibrated geomagnetic polarity time scale (GPTS) is proposed using the existing40Ar/39Ar ages. This implies the existence of a short normal polarity event (N2), identified on six different sites, within the reversed Mammoth subchron, called the Kada-Hadar event. The age calculated for the Kada-Hadar event, using linear interpolation of the dated horizons, assuming a constant rate of sedimentation is 3.246 Ma and its duration is about 8 kyr.  相似文献   

8.
We present rock-magnetic and paleomagnetic results obtained on samples belonging to a Neogene sequence of 11 successive lava flows and a dyke from La Gomera (Canary Islands, Spain). Analysis of thermomagnetic curves allows to distinguish three types of samples: (i) Type H samples with low-Ti titanomagnetite as the only carrier of remanence; (ii) type M samples with a main intermediate Curie-temperature phase (TC = 450°C) and low-Ti titanomagnetite; (iii) type L curves with a low Curie-temperature phase (TC = 120 to 200°C) and an intermediate Curie-temperature phase (TC = 400°C). Analysis of hysteresis parameters suggests that the grain size of most studied samples corresponds to pseudo single-domain particles, which can be also interpreted as a mixture of single-domain and multi-domain particles. Paleomagnetic experiments reveal only a single paleomagnetic component. Characteristic remanence of all studied lava flows and the dyke shows reverse polarity. The mean direction of the whole sequence is D = 188.2°, I =−35.4° (k = 46.9; α95 = 6.4°) and the calculated paleomagnetic pole yields a longitude λ= 150.7° and a latitude ϕ= 78.8° (k = 59.4; A95 = 5.7°). Secular variation is analysed through the scatter of virtual geomagnetic poles (VGP). A VGP angular scatter SB = 5.9 with an upper confidence limit Sup = 8.0 and a lower confidence limit Slow = 4.6 are obtained. This scatter is clearly smaller than the average for this latitude obtained for the last 5 Ma. The studied lava flows were probably emitted in a relatively short time interval.  相似文献   

9.
The intensity of natural remanence magnetisation (NRM) is measured along the three mutually-perpendicular directions using an astatic magnetometer. The intensity of induced magnetisation is measured using an apparatus fabricated in the laboratory. The Koenigsberger ratio has been calculated for all the samples and the ratio has been used to test the stability of NRM in the samples. The mean direction of magnetisation is determined from the three components of the NRM intensity. The palaeomagnetic pole position of the samples is determined using the direction of magnetisation and the site location. An attempt has been made to fix the geological age of the charnockites using palaeomagnetic methods.  相似文献   

10.
NRM directions measured from 32 sites in Middle Cambrian, Upper Silurian/Lower Devonian and Lower Carboniferous redbeds follow the trend of the Variscan arc in North Spain. Thermal demagnetisation does not significantly alter this pattern. Fold tests show that the NRM is earlier than the ?1 folds which form the arc; consistency of angle between bedding and the tilt-corrected NRM inclination (22–28°), similarity of the corresponding palaeolatitudes to Carboniferous values and microscopic evidence of Variscan redistribution of hematite indicates that the magnetisation is post-Lower Carboniferous. A statistical plot of the orientation of ?1 fold traces against angle between ?1 fold traces and declination of NRM shows that where these folds curve through 165° the NRM has been rotated through 110°: the arc is an orocline. Restoration of this rotation, and that needed to close the Bay of Biscay, brings the calculated mean palaeomagnetic pole reasonably close to the Upper Carboniferous part of the apparent polar wander path for Europe.  相似文献   

11.
The Sulitjelma Gabbro situated at 67.2°N, 15.4°E was intruded close to the Late Ordovician climax of regional metamorphism in the northern Scandinavian Caledonides. Magnetic properties have been examined from samples collected at seven localities in the south western part of this body. Total NRM directions show a tendency to be aligned near the present earth's magnetic field direction in this region. Stability to a.f. demagnetisation is low and commensurate with low Koenigsberger ratios (0.001–0.16) and the presence of unoxidised magnetite as the principal remanence carrier. After cleaning the site mean directions no longer show an alignment near the present earth's field and of six statistically significant sites three are approximately reversed with respect to remainder. The combined mean direction after cleaning isD = 195°,I = 15° (precision parameterk = 6) and the derived virtual geomagnetic pole is at 0°E, 14°S (α95 = 23°). This pole is close to poles of comparable age from the British Isles and suggests that Britain and Norway were part of the same crustal plate in Ordovician times. Discrepancies between Siluro-Devonian results from the two regions may be due to inadequate age coverage of present results.  相似文献   

12.
The Builth Volcanic Series of Llanvirnian age in Llanelwedd Quarries, mid-Wales, carries three components of natural remanent magnetisation. Component P, regarded as primary, is a thermochemical remanence directed at D = 181.7°, I = +54.5°, α95 = 4.4° relative to bedding. Component S is a secondary component with in situ D = 178.7°, I = ?6.7°, α95 = 5.4° and is believed to be a low-temperature chemical remanence (CRM) of Permo-Carboniferous age. Component R is directed close to the present geomagnetic field and is believed to be a recent viscous remanence (VRM).The results are of interest for three reasons. First, they are an unusually good example of multi-component NRM analysis, the three components being so clearly discriminated by thermal demagnetisation because they have almost completely separate blocking temperature ranges. Second, they provide evidence of a Permo-Carboniferous event (possibly a mild thermal or hydrothermal pulse promoting CRM acquisition) some 40 km north of the Hercynian orogenic front. Third, they illustrate very clearly the importance of detailed demagnetisation: this work revises the pole position for these rocks by ~ 10° and removes an obstacle to the palaeomagnetic recognition of the ~ 1000 km wide Iapetus Ocean cutting Britain in Ordovician time.  相似文献   

13.
A palaeomagnetic pole is established at 25.1°N 273.9°E (dp = 10.6°, dm = 14.3°) from the norite-charnockite complex at Angmagssalik, emplaced at 1800 Ma. A somewhat older palaeomagnetic pole at 4.2°S 246.7°E (dp = 4.2°, dm = 8.3°) is obtained from Archaean gneisses close to the northern boundary of the Nagssugtoqidian mobile belt; reversals of magnetization are present here. Both magnetizations were imposed during slow cooling following the (late) Nagssugtoqidian metamorphism.In general the gneisses, dyke amphibolites and granite of the Nagssugtoqidian mobile belt are unstably magnetized; their magnetization is attributable to the Earth's present field, and is often extremely weak.A pseudotachylyte within the Archaean gneisses has had a long cooling history. A fragment of the remanence reflects the magnetization characteristic of the Archaean gneisses, whereas most of the magnetization corresponds to a palaeomagnetic pole near that of the Angmagssalik complex. The pseudotachylyte is much older than its magnetizations.An apparent polar wander path is presented for Greenland at ca. 1750 Ma based on the above results and data from west Greenland.  相似文献   

14.
We studied the change of magnetic behaviour upon laboratory heating of altered mid-ocean ridge basalt (MORB) samples in the age range of 16-35 Ma to determine the influence of titanomaghemite inversion on the thermal demagnetisation of natural remanent magnetisation (NRM) of these basalts. MORB samples were heated to successively higher temperatures and at the same time the temperature dependence of either saturation magnetisation or NRM was monitored continuously. After each heating step, hysteresis loops and remanent magnetisation curves between 10 K and room temperature were measured. With this procedure, it is shown that the dominant magnetic remanence carrier in our MORB samples is cation deficient titanomaghemite. Moreover, it is demonstrated that the titanomaghemite is gradually changing to a Ti-poor titanomagnetite as the final inversion product. During inversion, both the Curie temperature as well as the maximum unblocking temperature of the NRM are gradually increasing. We show that the paradox of unblocking temperatures above the Curie temperatures often observed for altered MORBs is an artefact of this gradual, heating induced inversion process.  相似文献   

15.
Paleomagnetic samples were collected from four localities located in the southern rim of the Tarim basin. The samples were taken from volcanic rocks erupted between Jurassic and Quaternary. Detailed analysis of all samples has been carried out with progressive thermal demagnetization. A characteristic remanence (ChRM) with higher unblocking temperature has been isolated from all samples. The pole position from the middle Jurassic is at 52.5°N, 187.9°E(dp = 3.7°,dm =6.5°); the directions of the ChRM of Cretaceous correspond to a paleopole at 69.7°N, 211.6°E (dp = 9.8°,dm = 15.9°); the Quaternary pole from the Pulu site is at 79. 9°N, 183.1°E(dp = 1.6°.dm =2.4°). On the basis of these new paleomagnetic data, tectonic evolution of Tarim block is presented.  相似文献   

16.
The major Proterozoic igneous intrusions in the Swedish sector of the Baltic Shield are the Ragunda complex (1293 m.y., palaeomagnetic pole 165°E, 54°N) and the Nordingrågabbro-granite-anorthosite complex (1385 ± 30 m.y.). The latter body has been partially remagnetised by later post-Jotnian dolerites (1254 m.y.), and sites influenced by the dolerites have a stable magnetisation with a mean direction D = 45°, I = ?39°, (α95 = 4.3°). Elsewhere, the gabbro-anorthosite facies have a magnetisation of dual polarity predating the dolerite and recoverable at various stages of thermal and/or a.f. cleaning with a mean of D = 48°, I = 37° (α95 = 5.3°); medium and high coercivity remanence resides in large magnetite grains and fine, predominantly hematite, rods in feldspar megacrysts. The Nordingrårapakivi granite yields a mean, also including dual polarities, of D = 221°, I = ?25° (α95 = 13°), and the Gävle granite yields a mean of D = 26°, I = 17° (α95 = 13°).New data define the a.p.w. path for the Baltic Shield after final uplift and cooling of the ca. 1800 m.y. Svecofennian mobile belt and prior to intrusion of the post-Jotnian dolerites at 1250 m.y.; this (ca. 1500–1200 m.y.) path defines a double loop similar in size and shape to the contemporaneous path for the Laurentian Shield and the paths can be superimposed to define relative positions of the shields. They were in juxtaposition prior to 1200 m.y. with the optimum reconstruction obtained by rotation of approximately 64° about a Euler pole at 1°E, 36°N. Pre-1500 m.y. palaeomagnetic data are also shown to fit this same unique reconstruction. The main geological correlations are an alignment of the Lower/Middle Proterozoic major strike-slip zones, the structural trends within the pre-1700 m.y. mobile belts, and the Grenville and Sveconorwegian (ca. 1100 m.y.) mobile belts. The anorogenic magmatism characteristic of Proterozoic times became gradually more restricted to one active margin of the continental reconstruction as temperature gradients decreased and the crust consolidated. All of these Proterozoic tectonic/magmatic trends are parallel to the long axis of the continental reconstruction.  相似文献   

17.
An Upper Jurassic dolerite sill from Lomfjord, northeast Spitsbergen, has been submitted to rock- and palaeomagnetic studies. In the cooling stage the original titanomagnetite underwent a high-temperature alteration forming exsolution of ilmenite lamellas. Due to rapid cooling the border zones in part escaped the high-temperature alteration but instead low-temperature oxidation, producing at least a low-temperature metastable magnetic mineral, is fairly pronounced in these parts of the sill. Thermal demagnetization has established that both mineral phases carry the same general magnetization direction suggesting the total remanence (reverse) to be of deuteric origin. Consideration of the cooling rate indicates that the accumulated geomagnetic secular variation may cover a time span of the order of 103 years. The relative pole position is at 61°N, 210°E, a result which is in agreement with some other Mesozoic results from Spitsbergen, but in rather marked disagreement with other published data for the Mesozoic of Europe.  相似文献   

18.
Paleomagnetic samples were collected from 190 m of the Late Carboniferous/Early Permian Casper Formation in southeastern Wyoming. A total of 549 samples was drilled near the vicinity of Horse Creek Station at an average stratigraphic interval of 33 cm. All samples were reversely magnetized. Rock magnetic analyses indicate that the primary carrier of remanence in the formation is hematite. A selection criterion applied to the partial demagnetized data restricted the sample population to 233, resulting in a paleomagnetic North Pole located at 47.4°N, 127.4°E (δp=0.7;δm=1.4). The Casper pole agrees well with other Late Carboniferous/Early Permian poles for cratonic North America. The tight clustering of these paleomagnetic poles suggests that little apparent polar motion with respect to North America occurred during this time. Comparing the stable North American poles with paleomagnetic poles from Late Carboniferous/Early Permian strata of the New England-Canadian Maritime region (Acadia) indicates that this region did not reach its present position relative to North America until at least the Early Permian.  相似文献   

19.
The Svecofennian mobile zone occupies the bulk of the Fennoscandian shield and represents terrain subjected to profound tectonic activity and granite intrusion at ~1800 My. This study covers the palaeomagnetism of basic rocks within this belt in Sweden between 65.5 and 67.5°N (gabbros and diorites of Kallax, Niemisel, Sangis, Stora Lulevatten and the Gällivare, Jokkmokk and Voullerim regions) magnetised during uplift and cooling of this belt at ~1750-1550 My. AF and thermal demagnetisation define a consistent sequence of high to low blocking-temperature components identifying a migration of the geomagnetic field during part of this interval. Together with the Rådmansö gabbro-diorite of central-east Sweden (palaeomagnetic pole 201°E, 36°N) these components yield a comparable sequence of palaeopoles to those derived from uplift magnetisations of the contemporaneous Svecokarelian terrain of Finland. The post-tectonic, Uppsala metabasite suite possesses a magnetite-held (“A”) remanence comparable to Svecofennian uplift magnetisations from elsewhere; within the aureole of the Almunge alkaline complex this has been largely displaced by a low blocking temperature (“B”) remanence, possibly related to a late stage in the Svecofennian uplift cycle. The Hälleforsnäs giant dyke possesses a magnetite-held remanence attributed to initial cooling at 1518 My (palaeomagnetic pole 167°E, 27°N) and at least two high blocking-temperature components. One of these is correlated with the ~1000-800 My Sveconorwegian mobile activity of southwest Sweden; this latter component is represented as the univectorial remanence in dolerite dykes of this age, and sporadically as a secondary component in the adjacent Svecofennian terrain.The results are compiled with other palaeomagnetic poles from the Fennoscandian shield to derive a generalised apparent polar wandering path for the interval ~1750-1550 My. They define segments of a large loop which agrees closely with uplift magnetisations from the contemporaneous Hudsonian mobile terrain of the Laurentian shield on a single reconstruction derived from Upper Proterozoic (1450-1200 My) palaeomagnetic data. The two shields thus appear to have formed an integral continental unit during the interval 1750-1200 My. A geological reconstruction of the Siberian and Laurentian shields is also tested and found to yield general agreement with the palaeomagnetic evidence. The major geological implications of the collective reconstruction are an alignment of major tectonic trends and a gradual restriction of anorthosite-Rapakivi magmatism between the termination of the ~1800 and ~1100 My mobile episodes.  相似文献   

20.
The Middle to Late Cambrian loop in the North American apparent polar wander path (APWP) has been variously attributed to tectonic rotations, remagnetizations and primary magnetizations. Although no primary thermal remanent magnetizations or primary detrital remanent magnetizations have as yet been demonstrated, the temporally self-consistent nature of the loop has been used as an argument for primary magnetizations. We have studied535 ± 5Ma nepheline syenites and syenites of the McClure Mountain alkalic complex, as well as495 ± 10Ma red trachyte dikes which intruded the complex, in an effort to find a primary TRM. Because Zijderveld analysis yielded consistent results for only one trachyte dike, remagnetization great-circle analysis was employed, giving a pole for the trachyte dikes at the tip of the loop (43°N, 114°E), while the syenites and nepheline synenites gave a pole at the base of the loop (18°N, 142°E). The magnetic carrier in the trachytes is hematite which apparently formed during a pervasive hydrothermal alteration. KAr whole rock dating of the trachytes suggests a Pennsylvanian age for the alteration, and thus a late Paleozoic remagnetization of the trachytes. Thus, the low-latitude Cambrian pole is confirmed, but we find no evidence in this study to support the primary nature of the Cambrian APWP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号