首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

2.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

3.
This paper is concerned with the islands of Montserrat Nevis, St. Kitts, St. Eustatius and Saba, which lie on the inner volcanic are at the northern of the Lesser Antilles. Andesites greatly predominate over basalts and dacites in this part of the arc. Generally the lavas from the northern Lesser Antilles contain low abundances of Ni, Cr and residual trace elements but lavas from Saba are enriched in these elements compared with the other islands in the group. The most important petrogenetic process in this part of the Lesser Antilles is probably partial melting of subducted oceanie tholeiite and this process accounts satisfactorily for the chemistry (especially the low Ni, Cr) and large volumes of the erupted andesites. Some andesites have, however, been produced by fractional crystallisation of basaltic magma and magma mixing probably accounts for some of the peculiar chemical and petrographic properties of the Saba andesites. The rocks from the Northern Lesser Antilles are different from those in the central part of the arc (more acid rocks, higher residual trace elements) and the southern islands have much higher proportions of basalt, some of it undersaturated and alkaline. It is thought that partial melting of mantle peridotite may be the predominant petrogenetic process at the southern end of the Lesser Antilles whereas partial melting of subducted oceanic crust is more important in the north.  相似文献   

4.
The Bouguer anomaly and the total intensity magnetic maps of Saurashtra have delineated six circular gravity highs and magnetic anomalies of 40-60 mGal (10−5m/s2) and 800-1000 nT, respectively. Three of them in western Saurashtra coincide with known volcanic plugs associated with Deccan Volcanic Province (DVP), while the other three in SE Saurashtra coincide with rather concealed plugs exposed partially. The DVP represents different phases of eruption during 65.5±2.5 Ma from the Reunion plume. The geochemical data of the exposed rock samples from these plugs exhibit a wide variation in source composition, which varies from ultramafic/mafic to felsic composition of volcanic plugs in western Saurashtra and an alkaline composition for those in SE Saurashtra. Detailed studies of granophyres and alkaline rocks from these volcanic plugs reveal a calc-alkaline differentiation trend and a continental tectonic setting of emplacement. The alkaline plugs of SE Saurashtra are associated with NE-SW oriented structural trends, related to the Gulf of Cambay and the Cambay rift basin along the track of the Reunion plume. This indicates a deeper source for these plugs compared to those in the western part and may represent the primary source magma. The Junagadh plug with well differentiated ring complexes in western Saurashtra shows well defined centers of magnetic anomaly while the magnetic anomalies due to other plugs are diffused though of the same amplitude. This implies that other plugs are also associated with mafic/ultramafic components, which may not be differentiated and may be present at subsurface levels. Paleomagnetic measurements on surface rock samples from DVP in Saurashtra suggest a susceptibility of 5.5×10−2 SI units with an average Koenigsberger ratio (Qn) of almost one and average direction of remanent magnetization of D=147.4° and I=+56.1°. The virtual geomagnetic pole (VGP) position computed from the mean direction of magnetization for the volcanic plugs and Deccan basalt of Saurashtra is 30°N and 74°W, which is close to the VGP position corresponding to the early phases of Deccan eruption. Modeling of gravity and magnetic anomalies along two representative profiles across Junagadh and Barda volcanic plugs suggest a bulk density of 2900 and 2880 kg/m3, respectively and susceptibility of 3.14×10−2 SI units with a Qn ratio of 0.56 which are within the range of their values obtained from laboratory measurements on exposed rock samples. The same order of gravity and magnetic anomalies observed over the volcanic plugs of Saurashtra indicates almost similar bulk physical properties for them. The inferred directions of magnetization from magnetic anomalies, however, are D=337° and 340° and I=−38° and −50° which represent the bulk direction of magnetization and also indicate a reversal of the magnetic field during the eruption of these plugs. Some of these plugs are associated with seismic activities of magnitude ≤4 at their contacts. Based on this analysis, other circular/semi-circular gravity highs of NW India can be qualitatively attributed to similar subsurface volcanic plugs.  相似文献   

5.
The Santanghu area is located on the northeastern margin of the Junggar Basin,northern Xinjiang,Northwest China.The Carboniferous volcanic rocks in this area are widely distributed in Kaokesaiergaishan,Santanghu,Daheishan and Naomaohu districts,which are located to the north of the Kalameili Fault.These rocks,sourced from a cognate magma,consist of basic,intermediate,and acidic lavas,and pyroclastic rock.The basic volcanic rocks are enriched with large-ion lithophile elements(LILE),but are relatively depleted in high field strength elements(HFSE),and have an obvious negative Nb-Ta-Ti anomaly.They were most probably derived from a depleted mantle source,and during their ascent,these magmas were not contaminated by the crustal material as they underwent magma crystallization differentiation.Based on the Carboniferous volcanic assemblage and geochemical data,it is apparent that the early Carboniferous volcanism occurred in a subduction-related tectonic setting.New LA-ICP-MS zircon U-Pb analyses constrain the age of the andesite within the volcanic rocks as the early Carboniferous(328.9-331.3 Ma).Combined with the regional geological record,comprehensive analysis of the isotope geochronological data indicates that the subduction of the Junggar Ocean predates the early Carboniferous,and that the Santanghu island arc magmatism was induced by the subduction of the Junggar Ocean in the Carboniferous.  相似文献   

6.
Potassium variation across the New Britain volcanic arc   总被引:1,自引:0,他引:1  
Late Cainozoic volcanoes of the New Britain island arc overlie an inclined Benioff zone that extends to a depth of at least 580 km. The rocks are tholeiitic basalt, andesite, dacite, and rhyolite. Unlike many other examples of island arcs described in the literature, K2O contents in rocks with the same SiO2 content do not increase progressively as depth,h, to the New Britain Benioff zone increases. The most complex relationships between K2O, SiO2, andh are shown by volcanoes overlying the deeper part of the Benioff zone. In these, the K2O contents of rocks containing more than about 60% SiO2,decrease as depth to the Benioff zone increases. The New Britain volcanic arc provides a striking exception to the generalisation thatK-h relationships are essentially similar in all island arcs.  相似文献   

7.
The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1–1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the volcanic front except in the northern segment where subduction of the Barracuda Rise perturbs the stress field. There is also evidence of specific temporal changes in the stress field that are probably due to large scale plate kinematics.  相似文献   

8.
The distribution of U in volcanic rocks from two transects across the Central Andes (latitudes 27°–28° S and 16°–18° S, respectively) differs from that of K. For a given SiO2, content of the rocks, K systematically increases with the distance from the trench, while the highest U abundances are found in the rocks overlying the thickest segments of the continental crust, which are situated in the middle parts of the transects. It is suggested that this variation of U reflects crustal contamination.  相似文献   

9.
It is the purpose of this paper to point out the similarity of the magmatic products in the circum-Caribbean region, and to show the geologic objections to the hypothesis of the production of sialic magmas by melting of the root of a sialic crust. These objections were presented only from the viewpoint of a geologist. They may show the necessity of other hypotheses as have been developed byEwing, Gorshkov, Hess, Donnelly, Wilson and others.  相似文献   

10.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

11.
Correlations of Late Tertiary volcanic stratigraphic columns in Guatemala, El Salvador, and Honduras indicate that a common lithostratigraphic sequence is present throughout northern Central America. The Late Tertiary volcanic sequences are divided into three lithostratigraphic formations that roughly parallel the Pacific coastline. The Chalatenango Formation, composed of rhyolitic tuffs and lavas, is of Middle to Upper Miocene age. It occurs in the northern and central portions of the Tertiary volcanic belt. The Bálsamo Formation consists of andesitic lavas, tuffs, and lahars and is Upper Miocene to Pliocene in age. It is only found on the Pacific coastal side of the Tertiary volcanic belt. The Cuscatlán Formation is made up of rhyolitic tuffs and volcanic sediments overlain by rhyolitic and basaltic lavas that were erupted during the Pliocene. In eastern and central El Salvador the Cuscatlán Formation overlies the Bálsamo Formation on the coastal side of the belt, but in western El Salvador and southeastern Guatemala it overlies the Chalatenango Formation on the northern side of the Tertiary volcanic belt. The apparent offset of the Cuscatlán Formation in western El Salvador may indicate that the underthrusting Cocos Plate was broken into segments in Pliocene time.  相似文献   

12.
地磁场长期变化和日长十年尺度变化的周期特征   总被引:1,自引:2,他引:1       下载免费PDF全文
根据历史地磁场模型GUFM1、第10代国际参考地磁场(IGRF10)模型和日长资料,采用小波变换方法,分析了地磁场磁矩、能量、西向漂移等参数的长期变化和日长十年尺度变化的周期分量及其时变特征.结果表明,1800~2005年期间,偶极子磁场长期变化有82年和48年准周期分量,它们与日长变化的周期没有直接关系.非偶极子磁场参数的长期变化与日长变化有66年和32年准周期分量,66年准周期比32年准周期强.在66年准周期分量,西向漂移比日长变化超前8.8年,非偶极子磁场能量比日长变化滞后15.6年.日长十年尺度波动和地磁场长期变化的起源不存在因果关系.  相似文献   

13.
The relationships among the thickness and grain-size of tephra-fall deposits and the volumetric flow rate of their source umbrella clouds are analytically obtained. The logarithm of the ratio of the probability distribution function based on grain size (ln R f) in fall deposits at two localities from the vent (r 1 and r 2, respectively) has a linear relationship with the particle-settling velocity, v, as: where Q is the volumetric flow rate of the umbrella cloud and A is a constant for a given pair of localities. The volumetric flow rate of the umbrella cloud can be estimated from granulometric data using this formula. Generally, the thickness–distance relationship of tephra-fall deposits depends on the initial grain-size distribution and the volumetric flow rate of the umbrella cloud. The empirical relationship of the exponential thinning behaviour can be extrapolated towards infinite distance only for a specific initial grain size which is similar to a log-normal distribution with σ φ=2.5, otherwise it holds only in a limited range of distances. In applying these results to the 1991 eruption of Mt. Pinatubo, it is shown that the volumetric flow rate of the umbrella cloud during the climactic phase of 15 June was approximately 5×1010 m3/s, which is fairly consistent with the expansion rate of the umbrella cloud observed in the satellite images. Received March 20, 1993/Accepted September 11, 1993  相似文献   

14.
Characterization, correlation and provenance determination of tephra samples in sedimentary sections (tephrochronological studies) are powerful tools for establishing ages of depositional events, volcanic eruptions, and tephra dispersion. Despite the large literature and the advancements in this research field, the univocal attribution of tephra deposits to specific volcanic sources remains too often elusive. In this contribution, we test the application of a machine learning technique named Support Vector Machine to attempt shedding new light upon tephra deposits related to one of the most complex and debated volcanic regions on Earth: the Pliocene-Pleistocene magmatism in Italy. The machine learning algorithm was trained using one of the most comprehensive global petrological databases (GEOROC); 17 chemical elements including major (SiO2, TiO2, Al2O3, Fe2O3T, CaO, MgO, MnO, Na2O, K2O, P2O5) and selected trace (Sr, Ba, Rb, Zr, Nb, La, Ce) elements were chosen as input parameters. We first show the ability of support vector machines in discriminating among different Pliocene-Pleistocene volcanic provinces in Italy and then apply the same methodology to determine the volcanic source of tephra samples occurring in the Caio outcrop, an Early Pleistocene sedimentary section located in Central Italy. Our results show that: 1) support vector machines can successfully resolve high-dimensional tephrochronological problems overcoming the intrinsic limitation of two- and three-dimensional discrimination diagrams; 2) support vector machines can discriminate among different volcanic provinces in complex magmatic regions; 3) in the specific case study, support vector machines indicate that the most probable source for the investigated tephra samples is the so-called Roman Magmatic Province. These results have strong geochronological and geodynamical implications suggesting new age constraints (1.4 Ma instead of 0.8 Ma) for the starting of the volcanic activity in the Roman Magmatic Province.  相似文献   

15.
IntroductionSincethe1960′s,thedevelopmentofmodernscienceandtechnologyhasgradualymadeitposibletopredictearthquakesandhaspromot...  相似文献   

16.
It is found that the overwhelming majority of mobile forms of the chemical elements (up to 99%) that are thought to produce favorable effects when they arrive with volcanic ash to soils and supply additional elements that enhance the bioproductivity of ecosystems do not come in the form of ash particles, but in a gas-dissolved form directly from volcanic aerosol. Volcanic ash when considered independently of volcanic eruptions does not contain considerable amounts of accessible forms of chemical elements that would enable us to consider them as sources of nutrient elements for living organisms. However, the extensive range of elements that are contained in ash in ratios that are necessary for effective life activities invests these elements with catalytic properties that regulate the nutrient regime of plants and that can be used in agriculture in combination with lower amounts of traditional fertilizers to produce substantial (up to 72%) yield increases and to improve the quality of agricultural products.  相似文献   

17.
Upper Cretaceous volcanic rocks were collected at 24 sites along the Pontides, N-NE Turkey, for rock magnetic and geochemical studies. Rock magnetic and petrographic methods showed that the lavas are characterized predominantly by titanomagnetites with a mixture of pseudo-single and multi-domain grains, whereas in tephrite single domain titanohematite was dominant. Measurements of magnetic susceptibility and the geochemical properties on different volcanic rock types provide important knowledge about the magnetic stability of the rocks. The magnetic properties are interpreted in terms of the composition, concentration, magma generation. Tephrite and phonotephrites with the highest intensities (5200 mA/m) and high magnetic susceptibility values (2585 × 10−5), largest grain sizes and Fe/Ti values, showing minor or no alteration are the most magnetic stable samples in contrast to dacites with the lowest intensity-magnetic susceptibility (520 mA/m − 573 × 10−5) and high alteration degree. The basanite samples show very low NRM (48–165 mA/m) but very high magnetic susceptibility (2906–3100 × 10−5) values suggesting the alteration of Fe-Ti minerals. It is shown that the magnetic properties of the basic to acidic rocks show a systematic variation with magma differentiation and could be related to fractional crystallization. Major and trace elements revealed that the lavas are compatible with complex magma evolution, with mineral phases of olivine+magnetite+clinopyroxene in basic series, amphibole+ +clinopyroxene in intermediate rocks and plagioclase+clinopyroxene+biotite in acidic series.  相似文献   

18.
18O/16O and 87Sr/86Sr ratios were determined for Quaternary calc-alkalic volcanic rocks from six volcanic rock suites in the central and western Japan arcs. The δ18O values relative to SMOW and 87Sr/86Sr ratios range from +6.3 to +9.90/00 and 0.70357 to 0.70684, respectively. Both the O- and Sr-isotopic compositions are higher than those for island-arc primitive magmas and their differentiates. The isotopic compositions of the calc-alkalic rocks cannot be derived by a simple fractional crystallization of the primitive magmas. On the other hand, the 18O- and 87Sr-enrichment is confined to the rock suites located in well-developed island arcs having thick continental-type crust with low or negative Bouguer anomalies. Involvement of 18O- and 87Sr-rich crustal material in the magma formation is suggested.The isotopic compositions vary remarkably within individual rock suites as well as from volcano to volcano. The data points in δ18O vs. 87Sr/86Sr plot accord with a mixing model between primitive magmas and crustal material of dioritic composition on an average, assuming their comparative Sr contents. The primitive magmas involved could not be low-Sr tholeiites, but magmas more or less enriched in incompatible elements including Sr, which correspond to high-alkali tholeiites or alkali basalts and their evolved magmas. The nature of the primitive magmas seems to change from tholeiitic to more alkalic with progressing island-arc evolution.Mixing of crust-derived melts is more plausible than assimilation of solid-rocks for involving 20 to 30% crustal material in the magmas along simple mixing curves. Isotopic variations between the rock suites are ascribed to variable Sr concentration radio of the end-members, variable isotopic compositions of crustal material or variable mixing ratio of the end-members. Extremely high-δ 18O rocks with moderate increase in 87Sr/86Sr ratio suggest another mixing process in shallower magma chambers between andesite magmas and metasedimentary rocks having high δ 18O and 87Sr/86Sr values but low Sr content. Subsequent fractional crystallization of once-derived magmas would be the prominent process for the rock suites showing gradual increase in 18O up to 10/00 with uniform 87Sr/86Sr ratios.  相似文献   

19.
More than 5000 km3 of magmatic material was erupted in Pliocene-Pleistocene times in a volcano-tectonic depression, i. e., the Hohi volcanic zone (HVZ) in central Kyushu, Japan. The eruptive deposits consist mainly of andesite lava flows and large-scale pyroclastic-flow deposits. Their eruptions were accompanied by the formation of an EW-oriented graben (70 km × 45 km) under regional NS extensional stress. Pre-Tertiary basement rocks are absent on the surface of the graben but occur at depth, having subsided up to 3 km. Radiometric ages of volcanic rocks on the surface show zoned isochrons from 5 Ma at the margin to 0.3 Ma in the center of the HVZ. The youngest center of age zonation coincides with a 30 mgal negative Bouguer gravity anomaly. Radiometric ages of rocks from drill cores are older toward the bottom of the graben, reaching a maximum of at least 4 Ma. Volcanic activity concentrated over time toward the center of the graben and buried successively erupted material. Areas of active volcanism in the HVZ became smaller and changed in style during the 5-Ma history of activity. Volcanism of the early stage (5-2 Ma) was characterized by voluminous eruptions of andesitic lava flows that formed lava plateaus and were intruded by EW-oriented feeder dikes, perhaps related to fissure eruptions. In contrast, late-stage volcanism (2-0 Ma) resulted primarily in andesitic to dacitic lava domes with features of monogenetic volcanoes produced at low eruption rates. The HVZ shows unimodal volcanism dominated by andesitic and dacitic lavas with a small amount of rhyolite and only traces of basalt; these characteristics differ from those that typify volcanism in most other extensional areas. Erupted material in the HVZ is of the calc-alkali and high-alkali tholeiite series and shows no significant chemical changes over 5 Ma, except for an increase in K2O after 1.6 Ma. The net horizontal displacement along normal faults indicates that the HVZ widened by about 10%–20% across the graben at an average rate of 0.1 cm/yr. I interpret the HVZ to be neither a pull-apart structure of the pre-Tertiary basement nor the result of propagation of the Okinawa Trough, but rather the earliest stage of rifting when vertical subsidence caused by normal faulting is compensated by filling with volcanic material.  相似文献   

20.
This paper reports a study of intrinsic attenuation and scattering in the Klyuchevskoi volcanic edifice. The data set consisted of small volcano-tectonic earthquakes occurring as deep as 30 km beneath Klyuchevskoi Volcano and recorded by radio telemetry seismograph stations installed on the edifice and near it. The digital seismograms of small volcano-tectonic earthquakes were processed by the multiple lapse time window analysis (MLTWA) method currently in use in seismology. The method uses experimental normalized integrals of 3D seismic energy density determined from several time windows applied to earthquake records that have been put through bandpass filters. The parameters that characterize the intrinsic attenuation and scattering of seismic energy of small volcano-tectonic earthquakes in Klyuchevskoi Volcano were estimated by adjusting the coefficients to ensure the best fit between experimental and theoretical integrals. An analytical solution to the seismic energy transfer equation was used to calculate the theoretical integrals of 3D seismic energy. Reliable estimates of the parameters that characterize the intrinsic attenuation and scattering in the material of the Klyuchevskoi volcanic edifice have been obtained. Our estimates of the Q for the edifice are below those derived by other workers for the Kamchatka lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号