首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Stable isotopes ratios (δ13C and δ15N) were measured in primary producers and consumers of two bays with contrasting eutrophic conditions in the Patos Lagoon estuary, southern Brazil: the Justino bay, a more pristine ecosystem, and the Mangueira bay, a heavily polluted region that receives the Rio Grande city sewage and effluencts of several industries. δ13C values of organisms collected in both subsystems were not different, but δ15N values had significant statistical differences, ca. 3.5‰ higher in the Mangueira bay. It is likely that primary producers and consumers in this subsystem are greatly influenced by higher nitrogen input due to domestic and industrial sewages. The stable isotope analysis also corroborated several trophic interactions previously established by gut content analysis, and due to its higher sensitivity, it was possible to better determine the contributions of different primary producers and detrital fractions to the consumers' diets. It was confirmed that plant detritus represents the main food source for most organisms. The stable isotope analysis also demonstrated that detritivorous benthic organisms in the same habitat have distinct diet compositions, with differential consumption of C3 and C4 plants. This technique showed that some consumers that eat detritus do not have in their stable isotopic signature any relationship with that of plants. It is likely that these consumers assimilate their carbon and nitrogen from other sources like microalgae or microorganisms that colonize decaying plants.  相似文献   

2.
Apalachicola Bay lies at the mouth of the Apalachicola River, where seasonally variable freshwater inflows and shifting winds have long been thought to contribute to the support of an unusually productive and commercially important oyster fishery. Links between the river and productivity have been shown to lie in salinity-induced reductions in oyster predators and oyster disease as well as organic supplements from an extensive floodplain. Several studies have also indicated that nitrogen (N) and phosphorous (P) carried by the river are important in fertilization of bay primary production. While there is concern that upstream water withdrawals may impact the fishery, the importance of riverine N to oyster diets remains unclear. We measured N and carbon (C) stable isotopes (δ15N, δ13C) in macroalgae, surface-water nitrate, and surface sediments, which showed a gradient from enriched riverine δ15N values to more depleted values in the Gulf of Mexico. In contrast, δ13C of particulate matter is depleted in the river and enriched offshore. Oyster stable isotope values throughout Apalachicola Bay are more complex, but are dominated by freshwater inputs and reflect the variability and hydrodynamics of the riverine inflows.  相似文献   

3.
Stable isotope ratios of carbon and sulfur were used to assess organic matter utilization of numerically abundant consumers present in Apalachicola Bay, FL, USA. These results were used to infer nitrogen isotopic enrichment of organic matter sources in an effort to establish baseline δ 15N enrichment for trophic evaluations. We compared results from concentration-independent and concentration-dependent mixing models and found that the two methods resulted in widely different conclusions about the importance of organic matter sources that varied ninefold in sulfur concentrations. Nitrogen isotopic enrichment was used to determine relative trophic positions of consumer organisms. Source elemental concentrations of nitrogen were also considered in the calculation of relative trophic levels in a concentration-dependent approach. Concentration-independent and concentration-dependent methods of calculating trophic results were compared. While relative trophic levels of individual species varied continuously from approximately 1.7 to 3.5, comparisons of trophic level among consumers indicated four possible trophic groupings. Filter feeders (mussels and oysters) made up the lowest trophic tier while teleost fishes made up the highest trophic tier. Invertebrates sampled were assigned intermediate nondiscrete trophic levels. Because δ 15N values of important organic matter sources in the system were similar, the concentration-independent and concentration-dependent methods did not result in significantly different conclusions about trophic level for any of the consumers examined. However, a comparison of the two methods applied to a hypothetical case found that differences in base δ 15N values ranging approximately 4‰ resulted in significantly different trophic-level assignments when comparing the concentration-dependent and concentration-independent methods of trophic-level calculations. Our results confirm that consideration of the elemental concentrations of the base organisms is an important factor in determining source contributions and may affect trophic-level calculations in systems with a sufficient range of base nitrogen enrichment. However, this result depended on the relative isotopic signatures of the chosen sources and their elemental concentrations and should be considered individually for each system.  相似文献   

4.
5.
The present study reports nitrogen and carbon stable isotope data (δ15N and δ13C) from four large (63–400 km2), shallow (∼1 m) coastal lagoons on Egypt’s Nile Delta. While the lagoons all receive sewage and agricultural drainage, the magnitude of loading varies. In this preliminary survey, we document wide variability in the δ15N and δ13C isotope values of major fish groups among these lagoons. There were no consistent or significant differences among the major groups of fish, including carp, catfish, mullet, and tilapia. There was a strong positive correlation (R 2 = 0.84) between the average δ15N values of fish muscle and estimated water residence time among the lagoons. This preliminary evidence suggests that nitrogen cycle transformations may be more important than primary N source differences in determining N isotopic ratios of organisms in the lagoons. The δ13C results point to the probable importance of autochthonous particulate organic matter rather than terrestrial detritus or marine plankton in the diets of resident fish populations in the lagoons.  相似文献   

6.
We characterized stable isotope mixing along a river-Great Lake transition zone in the St. Louis River, an important fish nursery in western Lake Superior, and used it to identify food web linkages supporting young fish production. We observed a broad, spatial pattern in the carbon stable isotope ratio (δ13C); downriver enrichment in particulate organic carbon and aquatic vegetation δ13C, as well as pelagic, benthic and littoral invertebrate δ13C, reflected isotope mixing along the river-lake transition zone. Fishes with similarly enriched δ13C were used to identify benthopelagic and littoral trophic pathways. River and Lake Superior organic matter (OM) sources contributed to both pathways. Differences between the δ13C in fishes and invertebrate prey revealed that fish production was supported at multiple spatial scales. The result was that the food web specific to any location along the transition zone incorporated multiple OM sources from across the watershed.  相似文献   

7.
海岸带潮滩生源要素生物地球化学循环过程是国际地圈生物圈计划(IGBP)、海岸带陆海交互作用(LOICZ)研究的重要内容,也是全球变化区域响应研究中的重要组成部分。在过去的10~20年之间,潮滩生源要素氮的生物地球化学循环研究得到了长足的发展。基于此,较为全面、系统地总结和分析了有关潮滩氮营养盐的来源、潮滩氮素的物理、化学和生物迁移转化过程及氮素地球化学循环过程中底栖生物效应等一系列研究成果,并提出了今后潮滩生源要素氮的生物地球化学循环研究重点和发展趋向。  相似文献   

8.
Stable isotopic ratios of carbon and oxygen (δ13C and δ18O) from mollusk shells reflect the water quality characteristics of Florida Bay and can be used to characterize the great temporal variability of the bay. Values of δ18O are directly influenced by temperature and evaporation and may be related to salinity, δ13C values of δ13C are sensitive to organic and inorganic sources of carbon and are influenced by productivity. Analyses of eight mollusk species from five short-core localities across Florida Bay show large ranges in the values of δ13C and δ18O, and reflect the variation of the bay over decades. Samples from southwester Florida Bay have distinct δ13C values relative to samples collected in northeastern Florida Bay, and intermediate localities have intermediate values.13C values of δ13C grade from marine in the southwest bay to more estuarine in the northeast. Long cores (>1m), with excellent chronologies were analyzed from central and eastern Florida Bay. Preliminary analyses ofBrachiodontes exustus andTransenella spp. from the cores showed that both δ13C and δ18O changed during the first part of the twentieth century. After a century of relative stability during the 1800s, δ13C decreased between about 1910 and 1940, then stabilized at these new values for the next five decades. The magnitude of the reduction in δ13C values increased toward the northeast. Using a carbon budget model, reduced δ13C values are interpreted as resulting from decreased circulation in the bay, probably associated with decreased freshwater flow into the Bay. Mollusk shell δ18O values display several negative excursions during the 1800s, suggesting that the bay was less evaporitic than during the twentieth century. The isotope records indicate a fundamental change took place in Florida Bay circulation early in the twentieth century. The timing of the change links it to railroad building and early drainage efforts in South Florida rather than to flood control and water management measures initiated after World War II.  相似文献   

9.
Taking limestone soil and yellow soil, the two major soil types in karst areas as examples, analyzing stable carbon isotope composition (δ13C value) of soil organic matter (SOM) in bulk soils and particle-size fractions of four soil profiles under three vegetable forms, the following results are reached: in the limestone soil profile, soil organic carbon contents are all above 1.0%, the highest value is 7.1% in the surface soil; however, they are between 0.3% and 4.6% in the three yellow soil profiles. From the surface to the bottom of the soil profiles, the variation of δ13C value of soil organic carbon for limestone soil profile is only between −24.1‰ and −23.0‰, however, it’s between −24.8‰ and −21.1‰ for yellow soil profiles. The variation range of δ13C value of soil organic carbon associated with particle-size separates is slight for limestone soil but is considerable for yellow soil. The contrast research indicates that the changes between the contents and the δ13C value of soil organic carbon with depth are complex. The vertical patterns of stable carbon isotope in soil organic matter have a distinct regional characteristic in karst areas.  相似文献   

10.
This study identifies isotope signatures associated with autotrophic and heterotrophic microbial communities that may provide a means to determine carbon cycling relationships in situ for acid mine drainage (AMD) sites. Stable carbon isotope ratios (δ13C) of carbon sources, bulk cells, and membrane phospholipids (PLFA) were measured for autotrophic and heterotrophic microbial enrichment cultures from a mine tailings impoundment in northern Ontario, Canada, and for pure strains of the sulfur oxidizing bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The autotrophic enrichments had indistinguishable PLFA distributions from the pure cultures, and the PLFA cyc-C19:0 was determined to be a unique biomarker in this system for these sulfur oxidizing bacteria. The PLFA distributions produced by the heterotrophic enrichments were distinct from the autotrophic distributions and the C18:2 PLFA was identified as a biomarker for these heterotrophic enrichments. Genetic analysis (16S, 18S rRNA) of the heterotrophic cultures indicated that these communities were primarily composed of Acremonium fungi.Stable carbon isotope analysis revealed that bulk cellular material in all autotrophic cultures was depleted in δ13C by 5.6–10.9‰ relative to their atmospheric CO2 derived carbon source, suggesting that inorganic carbon fixation in these cultures is carbon limited. Individual PLFA from these autotrophs were further depleted by 8.2–14.6‰ compared to the bulk cell δ13C, which are among the largest biosynthetic isotope fractionation factors between bulk cell and PLFA reported in the literature. In contrast, the heterotrophic bulk cells were not significantly fractionated in δ13C relative to their carbon source and heterotrophic PLFA ranged from 3‰ enriched to 4‰ depleted relative to the isotopic composition of their total biomass. These distinct PLFA biomarkers and isotopic fractionations associated with autotrophic and heterotrophic activity in this laboratory study provide potential biomarkers for delineating autotrophic and heterotrophic carbon cycling in AMD environments.  相似文献   

11.
Amino sugars (AS) are important constituents of organic matter. However, very little is known about their cycling in marine waters. In this research, we assessed the distribution and cycling of these compounds in waters of the Bay of Bengal. For this purpose, samples of suspended particu late matter (SPM) were collected from 8 depths (surface to 1000 m) at 6 locations during the 166th cruise of the ORV Sagar Kanya in the Bay of Bengal in July/August 2001. The SPM samples were analysed for particulate organic carbon (POC), particulate nitrogen (PN) and AS concentrations and composition. The AS varied between 0.4 and 17.5 nmol/l. Concentrations were high in the surface waters and generally decreased with increasing depth. AS concentration decreased from the south to north. AS accounted for 0.01 to 0.71% and 0.05 to 2.37% of POC and PN, respectively. Rapid decrease in AS-C% and AS-N% with depth indicates that these compounds were preferentially degraded relative to bulk POC and PN. The composition of AS suggests that glucosamine (GLU-N) and galactosamine (GAL-N) were present in the surface SPM samples, and their abundance decreased from surface downwards. Relatively, low values of GLU-N/GAL-N ratio indicate that the organic matter was mostly derived from the detritus of micro-organisms. Our data suggest that chitin, a polymer of the glucosamine produced by many marine organisms was not the major source of AS in the Bay. Rapid cycling of these compounds indicates their importance in the cycling of nitrogen in marine waters  相似文献   

12.
The flow of organic matter along the main navigation channel of Ria Formosa, Portugal, was assessed using determinations of suspended particulate matter (SPM), particulate organic matter (POM), and chlorophyll a (chla) concentrations in conjunction with stable isotope values of primary producers, particulate matter, and two filter feeders. SPM in the lagoon is dominated by inorganic particles comprising 80% of total weight with organic matter averaging about 20%. The algal component of the POM averaged about 5% with the remainder comprised of detritus. The δ13C values of primary producers ranged from ?9.1‰ in the intertidal seagrassZostera noltii to ?30.7‰ in the red seaweedBostrychia scorpioides revealing underlying differences in the mechanisms of carbon uptake. The δ13C value ofB. scorpioides, which develops entangled on the salt marsh speciesSpartina maritima, suggests that its main source of inorganic carbon is atmospheric CO2. The δ13C values of the high marsh macrophyteSarcocornia perennis significantly increased with distance from the ocean while δ13C values ofZ. noltii decreased, probably because higher decomposition of organic matter at inner stations lowers the δ13CO2 value in the water. The δ15N values of Ulvales, seagrasses, and marsh plants significantly increased from outer stations to inner stations. This increase may be due either to recycling of nitrogen (N) within the marsh (with loss of light N2 or NH4) or to inputs of isotopically heavy N from sewage. The δ15N values of particulate matter showed an opposite trend, which indicates higher microbial degradation of organic matter at the inner lagoon. The data demonstrate that the seston in the lagoon is a mixture of detritus from lagoon primary producers with a minor contribution of microalgae. The filter feeders are most likely assimilating a mixture of phytoplankton and microphytobenthos. Digestion of lagoon seston is selective. The δ15N values of both muscle and digestive gland of filter feeders showed the opposite gradient of particulate matter indicating that the depleted δ15N of SPM at inner stations was not assimilated or even ingested. Stable isotopes values did not differ between the filter-feeders—the musselMytilus galloprovincialis collected on buoys and the clamTapes decussatus collected in the sediment—suggesting a considerable mixture of benthic-pelagic organic matter throughout the water column. Assessment of the changes in isotopic decomposition of detritus as it decays is required to refine our understanding of organic matter transfers in detrital food webs.  相似文献   

13.
The present study focused on detecting variations in trophic relationships among blue crab (Callinectes sapidus) consumers according to water quality along two estuaries in North Carolina. Stable isotope (δ15N and δ13C) analyses of particulate organic matter and bivalve(Rangia cuneata andCorbicula fluminea) food sources were examined in combination with an Isosource mixing model. Results suggest that blue crab δ13C values increased significantly with increasing salinity from upper to lower sites along the Neuse River estuary (NRE; R2 = 0.87, p < 0.01) and Alligator River estuary (R2 = 0.92, p < 0.01). There was a positive relationship between blue crab δ15N values and nitrate concentrations for the NRE (R2 = 0.48, p = 0.12). This study found that blue crab δ13C values increased with salinity from upper to lower regions along both estuaries. Results suggest that blue crab production may have used alternative food sources that were isotopically (δ13C) depleted, especially in the upper NRE, and enriched sources in the mid to lower regions of both estuaries. Consumers sampled from the upper NRE may be influenced by higher nitrogen input from urban land use and municipal wastewater.  相似文献   

14.
赛里木湖沉积物有机质变化特征及其环境信息   总被引:3,自引:0,他引:3  
在分析赛里木湖湖泊沉积物中氮含量(TN)、有机碳含量(TOC)及其碳同位素(δ~(13)C_(org))以及色素等指标的变化特征的基础上,结合沉积物中有机指标的环境意义的探讨,揭示了新疆赛里木湖湖泊沉积物中有机质所蕴含的环境信息.赛里木湖沉积物中总有机碳含量、总氮含量的变化反映了流域初级生产力的变化,沉积物色素变化是有机质保存条件的指标,间接指示了湖泊-流域水热配置环境.有机碳同位素(δ~(13)C_(org))反映了湖泊内外源的混合信息.结合有序样品聚类分析方法,可以将赛里木湖近代环境划分为四大发展阶段:1、各有机指标相对稳定;2、各有机指标明显波动;3、各有机指标显著增加;4、各有机指标快速增加.  相似文献   

15.
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm?2) were 60–80 % less than those observed at the head (0.361 g cm?2) and mouth (0.564 g cm?2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.  相似文献   

16.
The stable isotope compositions of sedimentary organic carbon and content of organic carbon for sediment cores recovered at two sites (sites 724C and 725C) during Ocean Drilling Program (ODP) Leg. 117 on the Oman continental margin are used to document variability of the monsoon winds for the past 350 ka. Although both sites have a mean δ13C value of -20.1‰, three zones depleted in13C are observable at site 724C during isotope stages 3, 8 and 10, while only one zone is recognizable at site 725C. Increased coastal upwelling during isotope stage 3 owing to intense SW monsoon winds resulted in higher concentration of CO2 in the water column causing the formation of organic matter that was depleted in13C. The other two zones deposited during oxygen isotope stages 8 and 10, which are also characterized by low values of organic carbon, nitrogen and C/N ratios, could be attributed to the dilution by terrestrial material derived from paleosol by transported by northwester lies. Because of utilization of13C enriched dissolved CO2 during the last glacial maximum Holocene sedimentary organic materials are depleted in13C relative to the the fomer. The content of residues organic carbon (ROC) is higher at site 724C (with an average of 2.3 ± 1.2%) relative to site 725C, which averages to 0.9 ± 0.4% probably because of differences in the degree of preservation. Organic material deposited at site 725C has undergone more degradation relative to site 724C as reflected by a systematic downcore decrease in13C resulting from a loss of13C enriched organic compounds. Owing to lack of good chronology at site 725C, a zone that is characterized by low δ13C values it could not be correlated with the other three zones observed at Site 724C.  相似文献   

17.
We used growth rates of juvenile winter flounderPseudopleuronectes americanus to assess anthropogenic influence on habitat quality at three sites in Narragansett Bay, Rhode Island. The upper bay site, Gaspee Point, had the highest population density and concentration of total nitrogen; human inputs decreased down bay. Growth rates of individually marked fish were measured in three 15-d experiments from June 8 to July 6, 1998 in 1-m2 cages placed at upper, middle, and lower bay sites. Water temperature, salinity, dissolved oxygen (DO), and benthic food were also measured. Stable isotopes of nitrogen and carbon were measured in experimental fish as possible indicators of nutrient enrichment and to identify organic carbon sources. Growth rates were 0.22–0.60 mm d−1, with the highest average at the mid-bay site. Growth was initially fastest at Gaspee Point, but dropped off as DO concentrations fell. Step-wise multiple regression indicated that location (upper, middle, or lower bay) explained most of the variability in fish growth (40%). Coefficients of other significant variables indicated that fish grew faster at lower salinities, smaller sizes, and with decreased time that DO was below 2.3 mg l−1. Benthic prey varied among sites and there was significantly less food and fewer species at Gaspee Point.Polydora cornuta was a favored food at all sites and was found in over half the stomachs. Values of δ15N in fish and sediments did not reflect differences in total nitrogen concentrations recorded near the sites. We suggest that anthropogenic influences, such as nutrients and sewage, affected habitat quality by reducing DO, which lowered fish growth rates.  相似文献   

18.
High resolution carbon isotope analyses of carbonate and organic carbon from Meishan, South China showed that the variation of δ13Ccarb is marked by three large positive excursions during the Changhsingian (end-Permian). Carbon isotope stratigraphy during this stage shows three cyclic intervals in δ13Ccarb, with two cycles corresponding to the lower (Paleofusulinid minima Zone) and one corresponding to the upper Changhsingian (P. sinensis Zone). The large positive δ13Ccarb excursions indicate episodes of enhanced burial of isotopically light or-ganic carbon, presumably in response to deep-water anoxia episodically extending into shallow water with the rise of sea level. The organic carbon during the Changhsingian is distinguished into two groups, and the δ13Corg of each group parallels (separately) the more detailed profile of δ13Ccarb, strongly showing that the values of fractionation Δ13Ccab-org remain relatively constant, with only two intervals with anomaly. The enhanced fractionation Δ13Ccab-org with large negative δ13Corg excursions apparently indicates significant inputs from sulfide-oxidizing bacteria and green sulfur bacteria, notably at bed 24 just predating mass extinction. Our evidence appears to support that the ex-tended euxinic water is possible for the main pulse of mass extinction at the end-Permian.  相似文献   

19.
Nitrogen loading from anthropogenic sources, including fertilizer, manure, and sewage effluents, has been linked with declining water quality in coastal lagoons worldwide. Freshwater inputs to mid-Atlantic coastal lagoons of the USA are from terrestrially influenced sources: groundwater and overland flow via streams and agricultural ditches, with occasional precipitation events. Stable nitrogen isotopes ratios (δ15N) in bioindicator species combined with conventional water quality monitoring were used to assess nitrogen sources and provide insights into their origins. Water quality data revealed that nutrients derived from terrestrial sources increased after precipitation events. Tissues from two bioindicator species, a macroalgae (Gracilaria sp.) and the eastern oyster (Crassostrea virginica) were analyzed for δ15N to determine spatial and temporal patterns of nitrogen sources. A broad-scale survey assessment of deployed macroalgae (June 2004) detected regions of elevated δ15N. Macroalgal δ15N (7.33 ± 1.15‰ in May 2006 and 6.76 ± 1.15‰ in July 2006) responded quickly to sustained June 2006 nutrient pulse, but did not detect spatial patterns at the fine scale. Oyster δ15N (8.51 ± 0.89‰) responded slowly over longer time periods and exhibited a slight gradient at the finer spatial scale. Overall, elevated δ15N values in macroalgae and oysters were used to infer that human and animal wastes were important nitrogen sources in some areas of Maryland’s coastal bays. Different nitrogen integration periods across multiple organisms may be used to indicate nitrogen sources at various spatial and temporal scales, which will help focus nutrient management.  相似文献   

20.
Here we report on the temporal changes in the composition of dissolved organic carbon (DOC) collected in the tidal freshwater region of the lower Mississippi River. Lignin-phenols, bulk stable carbon isotopes, compound-specific isotope analyses (CSIA) and 13C nuclear magnetic resonance (NMR) spectrometry were used to examine the composition of high molecular weight dissolved organic matter (HMW DOM) at one station in the lower river over 6 different flow regimes in 1998 and 1999. It was estimated that the annual input of DOC delivered to the Gulf of Mexico from the Mississippi River was of 3.1 × 10−3 Pg, which represents 1.2% of the total global input of DOC from rivers to the ocean. Average DOC and HMW DOC were 489 ±163 and 115 ± 47 μM, respectively. 13C-NMR spectra revealed considerably more aliphatic structures than aromatic carbons in HMW DOC. Lignin phenols were significantly 13C-depleted with respect to bulk HMW DOM indicating that C4 grass inputs to the HMW DOM were not significant. It is speculated that C4 organic matter in the river is not being converted (via microbial decay) to HMW DOM as readily as C3 organic matter is, because of the association of C4 organic matter with finer sediments. The predominantly aliphatic 13C NMR signature of HMW DOM suggests that autochthonous production in the river may be more important as a source of DOC than previously thought. Increases in nutrient loading and decreases in the suspended load (because of dams) in the Mississippi River, as well as other large rivers around the world, has resulted in significant changes in the sources and overall cycling of riverine DOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号