首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
东准噶尔北缘两类钙碱性花岗岩特征及其构造-成矿意义   总被引:1,自引:0,他引:1  
依据前人对东准噶尔地区花岗岩类年代学和地球化学研究,将东准噶尔北缘钙碱性花岗岩划分为两类:一类为俯冲钙碱性花岗岩;另一类为后碰撞高钾钙碱性花岗岩.岩石地球化学对比研究发现,两类钙碱性花岗岩存在系统差异,兼具有相似性.岩石地球化学特点差异表现为俯冲钙碱性花岗岩,显示亲岛弧岩浆性,后碰撞高钾钙碱性花岗岩具有陆内后碰撞深成岩浆的特点.两者之间的相似性表明,造山带内花岗岩类由俯冲钙碱性→后碰撞高钾钙碱性系列演化是由于俯冲造山向碰撞造山快速转化、空间上位于同一造山带内,源区岩浆有双重性的特点.钙碱性花岗岩产出的构造环境具有多样性,成岩过程受造山带不同演化阶段相应构造背景制约,洋陆俯冲的岛弧环境和陆内造山的后碰撞环境分别是俯冲钙碱性和后碰撞高钾钙碱性花岗岩形成的构造背景.埃达克质岩浆亲和性显示俯冲钙碱性花岗岩与部分后碰撞高钾钙碱性花岗岩均有形成不同背景(岛弧和后碰撞)斑岩型矿床的潜力.后碰撞高钾钙碱性花岗岩与IOCG型矿床的空间联系,表明造山带伸展背景的后碰撞环境,也可能是IOCG型矿床产出的构造背景.两类钙碱性花岗岩构造背景的差异可能初步印证了具有岛弧斑岩型矿床的哈腊苏-卡拉先格尔和IOCG型矿床的老山口南东一带成矿环境的差异.  相似文献   

2.
通过对天山造山带古生代侵入岩岩石类型、岩石地球化学特征及年代学研究,初步厘定不同构造带侵入岩浆序列及形成构造环境。天山地区古生代侵入岩主要包括奥陶—志留纪俯冲期钙碱性花岗岩、泥盆纪后碰撞型正长花岗岩、石炭纪中早期俯冲型钙碱性花岗岩、石炭纪晚期后碰撞型正长花岗岩、石炭纪末后碰撞型镁铁-超镁铁质岩、二叠纪早期后造山型碱性花岗岩及洋壳残片等。俯冲期侵入岩主要为花岗闪长岩-石英二长闪长岩-石英闪长岩组合;同碰撞期为花岗闪长岩-二长花岗岩组合;后碰撞期为组成花岗岩-二长花岗岩组合;后造山期为正长花岗岩-碱性花岗岩组合。认为该地区古生代侵入岩与Terskey洋、北天山洋、南天山洋等洋盆演化密切相关,并建立了天山地区古生代构造演化模式图。  相似文献   

3.
《地下水》2016,(2)
东秦岭自古生代以来经历了多期花岗质岩浆活动形成了大量的花岗质岩石。依据锆石U-Pb年龄,这些花岗岩可分为三个主要期次:加里东期花岗岩、印支期花岗岩和燕山期花岗岩。详细研究这些花岗岩的岩石地球化学特征发现,早古生代的花岗岩表现为与大洋俯冲作用有关的岛弧钙碱性系列岩石,早中生代花岗岩具有后碰撞阶段花岗岩的地球化学特征,晚中生代花岗岩主要为Ⅰ型花岗岩并伴有A型花岗岩的出现。这说明东秦岭区域上经历了俯冲造山作用到碰撞造山和碰撞后陆内演化等不同阶段。  相似文献   

4.
三江地区义敦岛弧碰撞造山过程:花岗岩记录   总被引:43,自引:5,他引:43  
义敦岛弧碰撞造山带是特提斯-喜马拉雅巨型造山带中的一个复合造山带。本文利用义敦岛弧碰撞造山带29个花岗岩体的43件同位素测年数据,结合岩石地球化学特征,建立了造山带花岗岩的时间坐标。初步识别出4套不同成因类型的花岗岩,即印支期弧花岗岩、燕山早期同碰撞花岗岩、燕山晚期A型花岗岩和喜马拉雅期花岗岩。据此,再造了造山带的形成过程与演化历史:印支期的大规模俯冲造山作用(238-210Ma),形成义敦火山岩浆弧;大约自206Ma始,发生弧-陆碰撞,伴随岛弧地壳挤压收缩和剪切变形,发育同碰撞花岗岩;进入燕山晚期(138-73Ma),岛弧碰撞造山带发生造山后伸展作用,形成A型花岗岩带;喜马拉雅期发生陆内造山作用(65-15Ma),岛弧碰撞造山带出现逆冲-推覆和大规模走滑平移,伴随喜马拉雅期花岗岩的侵位和拉分盆地的形成。  相似文献   

5.
后碰撞花岗岩类的多样性及其构造环境判别的复杂性   总被引:39,自引:2,他引:37  
韩宝福 《地学前缘》2007,14(3):64-72
造山带中普遍存在着相当数量的后碰撞花岗岩类。它们在时间上晚于碰撞事件形成,在空间上可以不受构造单元的严格控制,而是可以跨构造单元分布,有时可以侵入在蛇绿岩之中。后碰撞花岗岩类的主元素特征属于中—高钾钙碱性系列和钾玄岩系列,但以钙碱性系列为主。按照MISA分类,后碰撞花岗岩类可以有I、S和A等3种类型,有的造山带以发育I型花岗岩类为主,而另一些造山带可以广泛发育S型花岗岩,而碱性A型花岗岩并不是在每个造山带都会出现。在微量元素构造环境判别图解上,后碰撞花岗岩类可以落在多种构造环境的区域。因此,仅仅依靠花岗岩类构造环境的地球化学判别图解会得出似是而非的结果。文中强调时空分布特征及区域地质构造的全面分析可能是厘定后碰撞花岗岩类最重要的依据,而在区域地质研究基础上的高精度锆石U-Pb年代学研究能够建立区域构造演化的年代学框架,进而准确地限定后碰撞花岗岩类岩浆活动的时限。  相似文献   

6.
东准噶尔北缘两类花岗质岩石及其地质意义   总被引:1,自引:0,他引:1  
张栋 《地质与勘探》2011,47(4):577-592
对东准噶尔北缘造山带内花岗质岩石以岩石地球化学特征为主的对比研究发现,该区主要存在两类花岗质岩石:造山带钙碱性花岗岩类和富碱花岗岩类。部分钙碱性花岗岩与新疆北部的埃迭克质岩具有相似的岩浆亲和性,而富碱花岗岩更多的表现出碱性花岗岩的岩石地球化学特点?两类花岗质岩石分别产于大陆碰撞造山带造山演化的俯冲环境和陆内后碰撞环境,...  相似文献   

7.
北秦岭东部及华北板块南缘由多条断裂以及韧性剪切带分割成不同块体,这些块体中分布着不同时代不同类型的花岗岩。在前人关于该区花岗岩研究的基础上,详细归纳和分析了研究区古生代以来花岗岩体的时空分布、地球化学特征及其构造属性。研究表明这些花岗岩可分为3个时期:加里东期、印支期和燕山期。加里东期花岗岩为准铝质到弱过铝质的钙碱性系列,具大陆弧花岗岩特征;印支期花岗岩为高钾钙碱性系列,地球化学特征与后碰撞阶段花岗岩较为相似;燕山期花岗岩表现为从早到晚由高Sr低Y型埃达克质岩向A型花岗岩转变为特征。本区花岗岩的这种时空分布特征暗示了该区构造演化经历了加里东期俯冲造山、印支期碰撞造山以及燕山期陆内构造等演化阶段。  相似文献   

8.
湘南地区燕山期成矿花岗岩的主元素地球化学特征可划分为3种类型,不同成矿花岗岩形成的岩浆演化机理有明显差异:(1)成矿花岗岩的K_2O/Na_2O比值较高,均显示高钾钙碱性-钾玄岩系列特征。(2)MC型与CM型早期次单元花岗岩相对贫硅、碱.富钙、镁、铁,铝质指数(A/KNC)较低,碱度指数(KN/A)都不高,属镁质-铁质准铝质的高钾钙碱性系列花岗岩类,总体显示出I型花岗岩的特征。C型和CM型晚期次单元花岗岩相对富硅碱、贫镁钙,属铁质弱过铝质-过铝质钾玄岩系列-高钾钙碱性系列花岗岩类:岩石的FeO~T/MgO值明显高于一般I型和M型花岗岩.较高的FeO~T值又与高分异的I型花岗岩相区别,总体显示出S型花岗岩的特征。(3)成矿花岗岩的F或Cl含量高.岩浆向过铝质方向或过碱性方向演化,晚期岩浆中的高场强元素浓度增大,导致MC型与CM型的花岗岩的早期次单元多有Cu、Pb、Zn、Sb等多金属化,C型和CM型的晚期次单元花岗岩则常有大型Sn、W、Pb、Zn、Nb、Ta和稀土等矿化。(4)成矿花岗岩的形成与壳幔岩浆混合作用有关.形成MC型和CM型早期次单元花岗岩的岩浆演化主要是岩浆混合作用.而CM型花岗岩晚期次的花岗岩类和C型花岗岩类的岩浆演化可能还存在分离结晶作用。  相似文献   

9.
秦岭印支期构造背景、岩浆活动及成矿作用   总被引:29,自引:3,他引:29       下载免费PDF全文
陈衍景 《中国地质》2010,37(4):854-865
秦岭造山带以其独特的大地构造位置、复杂的地质演化和丰富的矿产资源而成为地质科学研究的焦点,科学家已经基本清楚了其大地构造格局和地质演化轮廓,共识其在印支期(三叠纪:251~199.6Ma)彻底实现了由海盆向大陆造山带的转变。但是,盆山转变的过程细节、洋盆闭合的时间、三叠纪大地构造属性以及相关的岩浆作用和成矿作用研究薄弱,认识分歧较多。笔者通过综合分析地质、地球物理、地球化学、矿产资源等方面的研究成果,认为三叠纪的秦岭恰似现今地中海,并存着洋陆俯冲和陆陆碰撞,并逐渐由洋陆俯冲转变为陆陆碰撞体制;秦岭古特提斯洋于230~200Ma期间自东向西拉链式缝合,扬子陆块与华北-秦岭联合大陆之间的碰撞造山作用接踵而至;三叠纪的秦岭构造背景并非单一的陆陆碰撞,更非过去认为的造山后或碰撞后。秦岭印支期岩浆作用强烈,形成了埃达克岩、钙碱性花岗岩、高钾钙碱性花岗岩、碱性岩、疑似奥长环斑花岗岩、碳酸岩等多种岩浆岩;它们自勉略缝合带向北显示分带性,依次是:阳山—胭脂坝过铝质S型或改造型花岗岩带、南秦岭高镁埃达克质的钙碱性花岗岩带、北秦岭高钾钙碱性花岗岩带、华北克拉通南缘碱性岩-碳酸岩带;印支期岩浆作用的复杂性、多样性、空间分带性和成分极性等特点无法用陆陆碰撞或碰撞后构造体制来解释,而应是勉略洋板块向北俯冲的结果。秦岭印支期成矿作用长期被忽视,但最近已发现有重要经济价值的印支期矿床类型有碳酸岩脉型、造山型和斑岩型钼矿床,卡林型-类卡林型、造山型和斑岩-爆破角砾岩型金矿床,造山型银多金属矿床,表明在洋陆俯冲向陆陆碰撞转变体制的成矿作用强烈、成矿类型多样,印支期矿床的找矿潜力较大。  相似文献   

10.
隋振民 《吉林地质》1995,14(1):15-22
吉林省中生代花岗岩主要侵入时代可划分为印支早期、燕山早期和燕山晚期,印支早期花岗岩(γ^1-15)属造山花岗岩系列,是西伯利亚板块与华北板块对接过程中的产物,成因类型以I型为主;燕山早期花岗岩(γ^25)和燕山晚期花岗岩(γ^35,CA组合)属造陆隆起花岗岩系列,是环太平洋大陆边缘活化阶段的产物,成因类型为I型和S型,燕山晚期花岗岩(γ^35A组合)属非造山花岗岩系列,形成于“类裂谷大陆边缘”阶段  相似文献   

11.
满洲里—额尔古纳地区岩浆作用及其大地构造意义   总被引:14,自引:1,他引:14  
对满洲里-额尔古纳地区不同时代岩浆岩的地质,地球化学特征进行了初步研究,研究表明晚元古代花岗岩具S型花岗岩或地壳改造型花岗岩特征,形成于同碰撞造山环境,加里东早期花岗岩具I型,科迪勒拉I型或ACG特征,代表活动大陆边缘构造属性,加里东晚期花岗岩具S型或地壳改造型特征,代表陆-陆碰撞造山环境,加里东期花岗岩记录了多宝山-牙克石-伊尔施陆间洋壳消减和闭合的过程,海西晚期花岗岩属富碱低钙钙碱性岩石,具S型花岗岩或CPG,KCG花岗岩特征,形成于碰撞后构造环境,中生代早期岩 岩形成于蒙古--鄂霍茨克残余洋“剪刀式”闭合所造成的张性似裂谷环境,中生代晚期岩浆岩形成于挤压环境。  相似文献   

12.
祁漫塔格造山带——青藏高原北部地壳演化窥探   总被引:2,自引:0,他引:2  
祁漫塔格是东昆仑造山带的一个分支,位于青藏高原中北部,夹持于柴达木盆地和库木库里盆地中间,向西被阿尔金走滑断裂错段。从元古代到早中生代,由于受到多期、多阶段大洋俯冲和关闭影响,导致不同地体间发生碰撞拼贴和大陆增生过程,并由此引发一系列的岩浆事件。祁漫塔格造山带内发育新元古代花岗岩(1000~820 Ma)是对Rodinia超大陆形成的响应。以阿达滩和白干湖逆冲断裂为界,划分为南、北祁漫塔格两地体。北祁漫塔格地体作为活动大陆边缘,发育大量的早古生代与俯冲有关的花岗岩和VA型蛇绿岩;南祁漫塔格地体最初为洋内俯冲形成的原始大洋岛弧,发育早古生代SSZ型蛇绿岩、岛弧拉斑玄武岩和钙碱性火山岩。随着持续俯冲,年轻岛弧伴伴随地壳加厚转变为成熟岛弧。南、北祁漫塔格地体间的碰撞(弧-陆碰撞)可能发生在晚志留世(422Ma),并持续到早泥盆世(398Ma)。在此期间(422~389Ma),南祁漫塔格地体内发育一系列同碰撞型花岗岩;北祁漫塔格地体内发育一系列的大洋岛弧花岗岩。南祁漫塔格作为外来地体,碰撞拼贴对于大陆边缘、大陆增生意义重大。之后,南、北祁漫塔格地体进入后碰撞环境并发育一系列板内花岗岩。此外,伸展导致造山带垮塌,发育中泥盆统磨拉石建造。碰撞使得海沟后退,海沟阻塞导致俯冲减弱甚至停止,因而产生了石炭-二叠纪(357~251 Ma)岩浆活动缺口。古特提斯祁漫塔格洋的最终关闭可能始于晚二叠世,使得库木库里微板块拼贴于大陆边缘;碰撞抬升导致缺失上二叠统-中三叠统地层。早中三叠世(251~237 Ma)由于碰撞,俯冲大洋板片回转,之后断离,软流圈地幔物质沿岩石圈地幔通道上涌,使得新生下地壳部分熔融;到了晚三叠世,大规模岩石圈地幔和下地壳物质拆沉,导致古老地壳物质发生熔融,形成了一系列后碰撞背景下的钙碱性和碱性花岗岩。  相似文献   

13.
肖兵  陈华勇  王云峰 《地学前缘》2015,22(6):251-266
东天山大南湖-头苏泉岛弧带位于吐哈盆地南缘,是中亚造山带的重要组成部分,也是我国新疆地区最重要的成矿带之一,其形成时间和构造属性一直存在争议。本次研究首次在该岛弧带中最大的斑岩矿床土屋延东铜矿区发现了晚志留世花岗闪长岩,并对其进行详细的岩石学、年代学、全岩元素地球化学和Sr - Nd - Hf同位素分析,探讨其岩浆来源和构造背景。LA - ICP - MS锆石U - Pb定年结果显示,该岩体成岩年龄为420 Ma左右,为晚志留世岩浆活动的产物。全岩元素地球化学研究结果表明,花岗闪长岩显示准铝质到弱过铝质,中等镁值和钙碱性系列的地球化学特征;微量元素方面则富集轻稀土(LREE)元素、大离子亲石元素(LILE:Rb,Ba,K)和地球化学性质活泼的不相容元素(U,Th,Pb),相对亏损高场强元素(HFSE:Nb,Ta,Ti)。这些主微量元素地球化学特征均显示出岛弧岩浆岩的地球化学属性,其εNd(t)值为4.05~4.07,87Sr/86Sr初始值为0.704 149~0.704 520,εHf(t)值为8.91~11.66。Sr - Nd - Hf同位素特征表明它们来源于新生地壳,没有受到明显的古老大陆地壳混染。晚志留世花岗闪长岩体的发现表明:大南湖-头苏泉岛弧带与其北部的哈尔里克岛弧带在早古生代可能属于同一大洋岛弧,并且与中部的卡拉塔格-小热泉子弧后(间)盆地构成统一的弧盆体系,该认识对解构东天山古生代弧盆体系演化具有较为重要的地质意义。  相似文献   

14.
中国天山花岗岩类的时空分布及构造意义   总被引:6,自引:1,他引:6  
天山花岗岩类具明显的时空分带特征,以古生代最为明显.它们可分为:1.中天山南缘中加里东期花岗岩带:2.中天山北缘晚加里东期花岗岩带;3.中天山南缘早华力西期花岗岩带;4.中天山北缘中华力西期花岗岩带;5.马宗山南缘晚华力西期花岗岩带;6.南天山南坡晚华力西期花岗岩带.在时空上,花岗岩类在中天山陆壳南、北缘呈交替分布的格局,显示出与天山陆壳南、北张合呼应、交替演化的和谐一致关系.中天山花岗岩类是几个地槽主旋回的产物.天山花岗岩带与蛇绿岩带成“对”分布,沿“中天山南缘深断裂”,及“中国天山主干断裂”两侧延伸,二者互相平行.天山花岗岩类是多成因的.分为洋壳重熔型、陆壳重熔型及洋壳陆壳混合重熔型花岗岩.  相似文献   

15.
Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 Ma. The ages of the Indosinian granitoids in the Nanling Range and vicinity areas are mostly 240-205 Ma, indicating that they were emplaced in both late collision and post-collision geodynamic environments. No important granite-related metallogenesis occurred in this duration. A post-orogenic setting started at the beginning of the Yanshanian Period, which controlled large-scale granitic magmatism and related metallogenesis. This paper makes the first attempt to divide the Yanshanian Period into three sub-periods, i.e. the early, middle and late Yanshanian Periods, based mainly on the features of magmatism, especially granitoids and related metallogenesis and their geodynamic environments. The magmatic association of the Early Yanshanian (about 185-170 Ma) comprises four categories of magmatism, i.e. basalt, bimodal volcanics, A-type granite and intraplate high-K calc-alkaline (HKCA) magmatism, which indicates an extension-thinning of lithosphere and upwelling of mantle material to a relative small and local extent. Pb-Zn, Cu and Au mineralizations associated with HKCA magmatism represents the first high tide of Mesozoic metallogenesis in the Nanling Range area. During the middle Yanshanian, the lithosphere was subjected to more extensive and intensive extending and thinning, and hence mantle upwelling and basaltic magma underplating caused a great amount of crust remelting granitoids. This period can be further divided into two stages. The first stage (170-150 Ma) is represented by large-scale emplacement of crust remelting granites with local tungsten mineralization at its end. The second stage (150-140 Ma) is the most important time of large-scale mineralizations of non-ferrous and rare metals, e.g. W, Sn, Nb-Ta, Bi, Mo, Be, in the Nanling Range area. The late Yanshanian (140-65 Ma) was generally characterized by full extension and breakup of the lithosphere of South China. However, owing to the influence of the Pacific Plate movement, the eastern part of South China was predominated by subduction-related compression, which resulted in magmatism of calc-alkaline and shoshonite series and related metallogeneses of Au, Ag, Pb-Zn, Cu and (Mo, Sn), followed by extension in its late stage. In the Nanling Range area, the late Yanshanian magmatism was represented by granitic volcanic-intrusive complexes and mafic dikes, which are genetically related to volcanic-type uranium and porphyry tin deposits, and the mobilization-mineralization of uranium from pre-existing Indosinian granites.  相似文献   

16.
GRANITOIDS AND TETONIC EVOLUTION OF THE WEST KUNLUN OROGENIC BELT  相似文献   

17.
This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.  相似文献   

18.
西天山北部石炭纪火山岩特征与沟弧盆体系   总被引:18,自引:1,他引:18       下载免费PDF全文
本文据岩石化学资料确定了西天山北部石炭纪火山岩的化学系列和岩石组合,并论述了其地球化学特征,探讨了该地区的沟弧盆体系。北天山中石炭统上部岩石单元代表了准噶尔板块的活动陆缘,而下部岩石单元属于弧前盆地沉积物。北天山蛇绿岩套是扩张速度缓慢的古洋壳残片。中天山北缘的下石炭统火山岩和海西中期的花岗岩类岩石组合代表了厚度甚大的大陆型岛弧部分,而阿吾拉勒带中、下石炭统则属于内弧环境的火山岩岩石组合。伊什基里克带是有限拉张的弧后盆地。  相似文献   

19.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

20.
Mesozoic epithermal gold deposits in eastern China are divided into calc‐alkaline and alkaline magma‐related gold deposits, and are also grouped as low‐sulfidation, intermediate‐sulfidation and high‐sulfidation types, of which the first two predominate. These gold deposits are distributed in the Tianshan–Yinshan–Great Xing’anling Variscan fold belt of North China craton, Qinling‐Dabie Indo‐Sinian fold belt of Yangtze craton, and South China fold belt or Cathaysian block, from north to south along the eastern China continent. Most of the epithermal gold orebodies are hosted either in volcanic rocks or their related granitoids, and volcanic breccia pipes. These orebodies are mainly associated with adularia–chalcedony–sericite, and alunite–kaolinite–quartz alteration. These orebodies formed in four mineralization pulses at 175, 145–135, 127–115, and 110–94 Ma. The first three pulses correspond to the post‐collision period between the North China and Yangtze cratons, an extension period during late‐stage rotation of the principal compressional stress from N‐S to E‐W, and a dramatic thinning period of the lithosphere, respectively. The last mineralizing pulse was the result of another extension in South China. Although the mineralizing pulses occurred at different times, they all occurred in extensional settings and were accompanied by crust and the mantle interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号