首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   

2.
The Higo metamorphic terrane situated in west-central Kyushu island, southwest Japan, is composed of greenschist- to granulite-facies metamorphic rocks. The southern part of the metamorphic terrane consists mainly of garnet–biotite gneiss and garnet–cordierite–biotite gneiss, and orthopyroxene or cordierite-bearing S-type tonalite with subordinate amounts of hornblende gabbro. Rb–Sr, Sm–Nd and K–Ar isotopic ages for these rocks have been determined here. The garnet–biotite gneiss gives an Sm–Nd age of 227.1 ± 4.9 Ma and a Rb–Sr age of 101.0 ± 1.0 Ma. The hornblende gabbro has an Sm–Nd age of 257.9 ± 2.5 Ma and a K–Ar age of 103.4 ± 1.1 Ma. These age differences of the same samples are due to the difference in the closure temperature for each system and minerals. The garnet-cordierite–biotite gneiss contains coarse-grained garnet with a zonal structure conspicuously distinguished in color difference (core: dark red; rim: pink). Sm–Nd internal isochrons of the garnet core and the rim give ages of 278.8 ± 4.9 Ma (initial 143Nd/144Nd ratio = 0.512311 ± 0.000005) and 226.1 ± 28.4 Ma (0.512277 ± 0.000038), respectively. These ages are close to formation of the garnet core and the rim. It has been previously suggested that the Higo metamorphic terrane belongs to the Ryoke metamorphic belt. But Sr and Nd isotopic features of the rocks from the former are different from those of the Ryoke metamorphic rocks, and are similar to those of the granulite xenoliths contained in the Ryoke younger granite.  相似文献   

3.
Chris Parkinson 《Island Arc》1998,7(1-2):231-245
Variably dismembered and metamorphosed accretionary complexes constitute the basement of much of the Indonesian island of Sulawesi. The most extensive of these is the Pompangeo Schist Complex, which crops out over ∼ 5000 km2 in central Sulawesi, and is predominantly composed of interbanded phyllitic marble, calcareous phyllite, graphitic schist and quartzite; rocks of terrigenous to shallow marine origin. Along the eastern margin of the complex, schists are interthrust with unmetamorphosed Jurassic sandstone, which may represent parental material of the complex. The schists are unconformably overlain by pelagic sediments with an Albian–Cenomanian biostratigraphy. Synmetamorphic progressive deformation of the Pompangeo Schist Complex has resulted in repeated isoclinal folding and a strong transposition foliation striking north-northwest/south-southeast and dipping west, subparallel to the compositional banding of the complex; microstructural fabrics indicate a top-to-east sense of shear. On a regional scale the Pompangeo Schist Complex is lithostratigraphically coherent and an east-to-west metamorphic field gradient is recognizable, which, if continuous, represents a relatively low thermal gradient of ∼ 15 °C/km. K–Ar dating yielded ages of ca 111 Ma. Correlative metamorphic rocks appear to underlie the entire Neogene magmatic province, since they occur sporadically throughout western Sulawesi, including the Bantimala region of the South Arm. The Pompangeo schist metamorphism cannot be correlated with arc magmatism in western Sulawesi, which is of Neogene age. The Pompangeo and Bantimala schists, as well as other accretionary complexes in western Sulawesi, were probably generated in the same subduction system that was responsible for the extensive Mesozoic continental arc in central Kalimantan, at the eastern margin of Sundaland.  相似文献   

4.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

5.
Abstract Elemental and isotopic compositions of noble gases extracted from the bore hole water in Osaka plain, central Japan were examined. The water samples were collected from four shallow bore holes (180-450 m) and seven deep bore holes (600-1370 m) which have been used for an urban resort hot spring zone. The water temperatures of the deep bore holes were 22-50°C and that of the shallow bore holes, 13-23°C. The elemental abundance patterns show the progressive enrichment of the heavier noble gases compared with the atmospheric noble gas composition except for He, which is heavily enriched in deep bore hole water samples. 3He/4He ratios from the bore holes reaching the Ryoke granitic basement were higher than the atmospheric value (1.4 × 10−6), indicating a release of mantle He through the basement. The highest value of 8.2 × 10−6 is in the range of arc volcanism. On the other hand, the bore holes in sedimentary rocks overlying the basement release He enriched in radiogenic 4He, resulted in a low 3He/4He ratio of 0.5 × 10−6. 4He/20Ne and 40Ar/36Ar ratios indicate that the air contamination is generally larger in shallow bore holes than in deep ones from each site. The helium enriched in mantle He is compatible with the previous work which suggested up-rising magma in 'Kinki Spot', the area of Osaka and western Wakayama, in spite of no volcanic activity in the area. A model to explain an initiation of magma generation beneath this area is presented.  相似文献   

6.
Yong-Jiang  Liu  Franz  Neubauer  Johann  Genser  Akira  Takasu  Xiao-Hong  Ge Robert  Handler 《Island Arc》2006,15(1):187-198
Abstract   Pelitic schists from Qingshuigou in the Northern Qilian Mountains of China contain mainly glaucophane, garnet, white mica, clinozoisite, chlorite and piemontite. Isotopic age dating of these schists provides new constraints on the formation of the high-grade blueschists at Qingshuigou. White mica 40Ar/39Ar ages range from 442.1 to 447.5 Ma (total fusion age of single grain) and from 445.7 to 453.9 Ma (integrated age of white mica concentrates). These ages (442.1–453.9 Ma) represent the peak metamorphic ages or cooling ages of the blueschists during exhumation shortly after peak metamorphism. The 40Ar/39Ar dates in the present study are similar to ages previously reported for eclogites and blueschists in the area; this suggests that both the eclogites and pelitic sediments underwent high-grade metamorphism during the same subduction event. From this chronological evidence and the presence of well-developed Silurian remnant-sea flysch and Devonian molasse, it is concluded that the Northern Qilian Ocean had closed by the end of the Ordovician, and rapid orogenic uplift followed in the Devonian.  相似文献   

7.
Tadashi  Usuki  Hiroshi  Kaiden  Keiji  Misawa  Kazuyuki  Shiraishi 《Island Arc》2006,15(4):503-516
Abstract   In order to define the timing of granulite facies metamorphism, sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses were performed on zircons of three pelitic granulites from the lower metamorphic sequence of the Hidaka Metamorphic Belt, southern central Hokkaido, Japan. Both rounded and prismatic zircons were found in the granulite samples. The rounded zircons had thin (10–20 µm) concentric overgrowth rims on detrital cores, while the prismatic zircons did not have detrital cores. Both the overgrowth rims on the rounded zircons and the entire prismatic zircons were formed under granulite facies metamorphism and consistently yield Latest Oligocene–Early Miocene ages (23.7 ± 0.4 Ma to 17.2 ± 0.5 Ma; 206Pb/ 238U ages ( n  = 31) with low Th/U ratios, mostly <0.1). The internal structure of zircons and their SHRIMP U-Pb ages provide strong evidence in support of the granulite facies event occurring during the Latest Oligocene-Early Miocene. The detrital cores of rounded zircons show a huge variety of ages; Mesoarchean to Paleoproterozoic, Paleozoic to Mesozoic and Paleogene. The interior and marginal portions of the Eurasian continent including cratonic areas are suggested for their source provenances. These wide variations in age suggest that the protolith of the granulites of the lower metamorphic sequence were deposited near the trench of the Eurasian continental margin during Paleogene. The protolith of the lower metamorphic sequence of the Hidaka metamorphic belt was thrust under the upper metamorphic sequence, which had already been metamorphosed in early Paleogene. The Latest Oligocene-Early Miocene Hidaka high-temperature metamorphic event is presumed to have been caused by asthenospheric upwelling during back-arc rifting of the Kuril and Japan basins.  相似文献   

8.
High-pressure metamorphic rocks are exposed in Karangsambung area of central Java, Indonesia. They form part of a Cretaceous subduction complex (Luk–Ulo Complex) with fault-bounded slices of shale, sandstone, chert, basalt, limestone, conglomerate and ultrabasic rocks. The most abundant metamorphic rock type are pelitic schists, which have yielded late Early Cretaceous K–Ar ages. Small amounts of eclogite, glaucophane rock, garnet–amphibolite and jadeite–quartz–glaucophane rock occur as tectonic blocks in sheared serpentinite. Using the jadeite–garnet–glaucophane–phengite–quartz equilibrium, peak pressure and temperature of the jadeite–quartz–glaucophane rock are P  = 22 ± 2 kbar and T  = 530 ± 40 °C. The estimated P–T conditions indicate that the rock was subducted to ca 80 km depth, and that the overall geothermal gradient was ∼ 7.0 °C/km. This rock type is interpreted to have been generated by the metamorphism of cold oceanic lithosphere subducted to upper mantle depths. The exhumation from the upper mantle to lower or middle crustal depths can be explained by buoyancy forces. The tectonic block is interpreted to be combined with the quartz–mica schists at lower or middle crustal depths.  相似文献   

9.
Abstract 40Ar–39Ar analysis of phlogopite separated from a plagioclase lherzolite of the Horoman Peridotite Complex, Hokkaido, Japan, has yielded a plateau age of 20.6 ± 0.5 Ma in an environment where the metamorphic fluid was characterized by an almost atmospheric Ar isotopic ratio. The age spectrum is slightly saddle-shaped, implying some incorporation of excess 40Ar during the formation of the phlogopite at a depth. As the phlogopite has been inferred to have formed in veins and/or interstitials during exhumation of the peridotite body, metasomatic fluids, to which ground- and sea water might have contributed, were probably involved in the formation of phlogopite in the crustal environment. A total 40Ar–39Ar age of 129 Ma of a whole rock sample of the plagioclase lherzolite, from which the phlogopite was separated and is representative of the main lithology of the Horoman Peridotite Complex, indicates the occurrence of excess 40Ar. Hence, the age has no geological meaning.  相似文献   

10.
R. Y. Zhang    J. G. Liou  W. G. Ernst 《Island Arc》1995,4(4):293-309
Abstract Altered quartz-rich and nearly quartz-free eclogitic rocks and completely retrograde quartz-rich garnet amphibolites occur as blocks or lenses in gneisses at Weihai, northeastern tip of the Sulu ultrahigh-P belt. Eclogitic rocks with assemblage garnet ± clinopyroxene ± coesite + rutile have experienced three-stage metamorphic events including ultrahigh-pressure eclogite, granulite and amphibolite facies. Granulite metamorphic event is characterized by formation of the hypersthene + salite + plagioclase ± hornblende corona between garnet and quartz + clinopyroxene. P-T conditions for the three-stage recrystallization sequence are 840 ± 50°C, >28 kbar, about 760±50°C, 9 kbar, and ~650°C, <8 kbar respectively. Most country rock gneisses contain dominant amphibolite-facies assemblages; some garnet-bearing clinopyroxene gneisses recrystallized under granulite-facies conditions at about 740±50°C and 8.5 kbar; similar to granulite-facies retrograde metamorphism of the enclosed eclogitic blocks. Minor cale-silicate lenses within gneisses containing an assemblage grossular + salite + titanite + quartz with secondary zoisite and plagioclase may have formed within a large pressure range of 14-35 kbar. Eclogitic boudins and quartzo-feldspathic country rocks may have experienced coeval in situ UHP and subsequent retrograde metamorphism. The established nearly isothermal decompression P-T path suggests that this area may represent the interior portion of a relatively large subducted sialic block. The recognized UHP terrane may extend eastward across the Yellow Sea to the Korean Peninsula.  相似文献   

11.
Yasuo  Miyagi  Akira  Takasu 《Island Arc》2005,14(3):215-235
Abstract   Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P /low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P – T conditions are T  = 300–450°C and P  = 0.7–1.1 GPa for the epidote-blueschist facies, and the peak P – T conditions for the eclogite facies are T  = 700–730°C and P  ≥ 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase–biotite zone were reached. The high- P /low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep d P /d T geothermal gradients despite their diverse peak P – T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep d P /d T geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation.  相似文献   

12.
Abstract   Amphibolites in the Haenggongni area (Haenggongni amphibolite) and the Okbang area (Okbang amphibolite) in northeastern Yeongnam massif, South Korea occur as a sill-like body or inclusions within the metasedimentary sequences of the Proterozoic Wonnam Group. Major and trace element characteristics demonstrate that both amphibolites have tholeiitic chemical affinity. They are characterized by nearly flat rare earth element (REE) patterns, and low contents of immobile incompatible elements and have low values of Zr/Y, Ti/Y, La/Nb and Ta/Yb ratios, indicating enriched (E)-type mid-oceanic ridge basalt (MORB) affinities for their protoliths. This suggests that amphibolite protoliths formed in an extensional rift setting leading up to ocean opening. In combination with the previous studies in Yeongnam massif, three protolith types of amphibolites are assumed (E-type MORB, within-plate basalt and volcanic arc basalt). They could have been originated in different tectonic settings and/or different episodes. These characteristics are clearly different from the amphibolites in the Gyeonggi massif and Okcheon belt, in which most of the amphibolites show a within-plate basalt affinity that developed in continental rift zone.  相似文献   

13.
Petrogenesis and dating of the Kangding complex,Sichuan Province   总被引:18,自引:1,他引:17  
The Kangding group, also known as the Kangding complex, includes granulites, amphibolites, felsic gneisses and gneissic granites that are distributed along a belt from Kangding, Mianning to Panzhihua, in Sichuan Province. The complex has long been thought to represent the crystalline basement of the Yangtze block. On the basis of U-Pb and Pb-Pb whole rock ages[1,2] , and of similarities in metamorphic fa-cies and association of metamorphic rocks with typical Archean high grade terrains, t…  相似文献   

14.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

15.
Naotatsu  Shikazono 《Island Arc》1994,3(1):59-65
Abstract Chemical data on hydrothermally altered volcanic rocks from a green tuff belt in Japan indicate that the average rate of Mg removal from seawater due to seawater cycling through back-arc basins in the circum-Pacific region during the early to middle Miocene (25–15 Ma) is estimated to be 2.6±1 × 1013 g/year. This is similar to that through present-day mid-ocean ridges (2.4 × 1013 g/year). Hydrothermal fluxes of K, Ca and Si are calculated to be 4.2±1.6 × 1013 g/year, 4.3±1.7×1013 g/year and 1.0±0.4 × 1014 g/year, respectively. These calculated results indicate that the seawater/volcanic rocks interaction at subduction-related tectonic settings have to be taken into account in considering the geochemical mass balance of seawater over geologic time.  相似文献   

16.
Geographical distribution of helium isotope ratios in northeastern Japan   总被引:1,自引:0,他引:1  
Keika  Horiguchi  Sadato  Ueki  Yuji  Sano  Naoto  Takahata  Akira  Hasegawa  George  Igarashi 《Island Arc》2010,19(1):60-70
In order to study the precise geographical distribution of helium isotope ratios in northeastern Japan and compare it with geophysical data, we collected 43 gas and water samples from hot and mineral springs in the region where the ratio had never been reported, and measured the 3He/4He and 4He/20Ne ratios of these samples. It was found that the 3He/4He ratios show clear contrasts between the forearc and the back-arc regions in the Tohoku district in northeastern Japan. In the forearc region, the ratios are smaller than 1 RA (1 RA = 1.4 × 10−6; RA means the 3He/4He ratio of the atmosphere). On the other hand, those along the volcanic front and in the back-arc region are apparently higher. Moreover, we found a variation in the 3He/4He ratios along the volcanic front. In Miyagi Prefecture (38–39°N), the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1 RA in and around the southern border between Iwate and Akita Prefectures (39–39.5°N). Comparing the distribution of helium isotope ratios to results of recent geophysical studies, we found that the features in geographical distribution of helium isotope ratios are similar to those of seismic low-velocity zone distributions and high Qp−1 distributions in the uppermost mantle. These observations strongly suggest that the helium isotope ratios reflect the distribution of melts in the uppermost mantle and are a useful tool for investigating the origin, behavior, and distribution of deep fluids and melts.  相似文献   

17.
Abstract The Ryoke Belt in the Ikoma Mountains, Nara Prefecture, Japan, is composed mainly of various granitic, intermediate and gabbroic rocks. Igneous activity in this area is divided into two periods, early–middle Jurassic and late Cretaceous, based on isotopic dating. The intermediate plutonic rocks in the Fukihata area are composed of two rock types: Kyuanji quartz diorite and Fukihata tonalite. Rb–Sr whole-rock isochron ages have been determined for both plutonic rocks. Their ages and initial 87Sr/86Sr ratios are as follows: the Kyuanji quartz diorite has an age of 161.0 ± 17.9 Ma with an initial 87Sr/86Sr ratio of 0.70727 ± 0.00007, while the Fukihata tonalite has an age of 121.4 ± 24.6 Ma with an initial 87Sr/86Sr ratio of 0.70753 ± 0.00020. Our chronological results indicate that the Kyuanji quartz diorite belongs to the Jurassic mafic rocks, such as the Ikoma gabbroic mass, while the Fukihata tonalite belongs to the early Cretaceous granitic rocks. Both these intermediate plutonic rocks have different chemical characteristics and were derived from different magmas.  相似文献   

18.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   

19.
Yasushi  Mori  Tadao  Nishiyama  Takeru  Yanagi 《Island Arc》2007,16(1):28-39
Abstract   Reaction zones of 0.5–10.0 m thick are commonly observed between serpentinite and pelitic schist in the Nishisonogi metamorphic rocks, Kyushu, Japan. Each reaction zone consists of almost monomineralic or bimineralic layers of talc + carbonates, actinolite (or carbonates + quartz), chlorite, muscovite and albite from serpentinite to pelitic schist. Magnesite + quartz veins extend into the serpentinite from the talc + carbonates layer, while dolomite veins extend into the pelitic schist from the muscovite layer. These veins are filled by subhedral minerals with oriented growth features. Primary fluid inclusions yield the same homogenization temperatures (145–150°C) both in the reaction zone and in the veins, suggesting their simultaneous formation. Mass-balance calculations using the isocon method indicate that SiO2, MgO, H2O and K2O are depleted in the reaction zone relative to the protoliths. These components were probably extracted from the reaction zone as fluids during the formation of the reaction zone.  相似文献   

20.
Eleven whole rock Rb/Sr age determinations from the Chilean metamorphic basement — formerly considered as Precambrian — define two limiting reference isochrons of 342 and 273 my. Analized rocks are phyllites and schists of sedimentary origin with mineralogical assemblages mainly corresponding to the greenschist facies.Two metamorphic series characterize the Chilean metamorphic basement: an eastern low P/T series, and a western high P/T series. Four of the analyzed samples belong to the former and seven to the latter.The obtained age is interpreted as the age of a main metamorphic episode of the basement. This episode would have taken place in the Upper Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号