首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensity attenuation for active crustal regions   总被引:1,自引:0,他引:1  
We develop globally applicable macroseismic intensity prediction equations (IPEs) for earthquakes of moment magnitude M W 5.0?C7.9 and intensities of degree II and greater for distances less than 300?km for active crustal regions. The IPEs are developed for two distance metrics: closest distance to rupture (R rup) and hypocentral distance (R hyp). The key objective for developing the model based on hypocentral distance??in addition to more rigorous and standard measure R rup??is to provide an IPE which can be used in near real-time earthquake response systems for earthquakes anywhere in the world, where information regarding the rupture dimensions of a fault may not be known in the immediate aftermath of the event. We observe that our models, particularly the model for the R rup distance metric, generally have low median residuals with magnitude and distance. In particular, we address whether the direct use of IPEs leads to a reduction in overall uncertainties when compared with methods which use a combination of ground-motion prediction equations and ground motion to intensity conversion equations. Finally, using topographic gradient as a proxy and median model predictions, we derive intensity-based site amplification factors. These factors lead to a small reduction of residuals at shallow gradients at strong shaking levels. However, the overall effect on total median residuals is relatively small. This is in part due to the observation that the median site condition for intensity observations used to develop these IPEs is approximately near the National Earthquake Hazard Reduction Program CD site-class boundary.  相似文献   

2.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

3.
In regions that undergo low deformation rates, as is the case for metropolitan France (i.e. the part of France in Europe), the use of historical seismicity, in addition to instrumental data, is necessary when dealing with seismic hazard assessment. This paper presents the strategy adopted to develop a parametric earthquake catalogue using moment magnitude Mw, as the reference magnitude scale to cover both instrumental and historical periods for metropolitan France. Work performed within the framework of the SiHex (SIsmicité de l’HEXagone) (Cara et al. Bull Soc Géol Fr 186:3–19, 2015. doi: 10.2113/qssqfbull.186.1.3) and SIGMA (SeIsmic Ground Motion Assessment; EDF-CEA-AREVA-ENEL) projects, respectively on instrumental and historical earthquakes, have been combined to produce the French seismic CATalogue, version 2017 (FCAT-17). The SiHex catalogue is composed of ~40,000 natural earthquakes, for which the hypocentral location and Mw magnitude are given. In the frame of the SIGMA research program, an integrated study has been realized on historical seismicity from intensity prediction equations (IPE) calibration in Mw detailed in Baumont et al. (submitted) companion paper to their application to earthquakes of the SISFRANCE macroseismic database (BRGM, EDF, IRSN), through a dedicated strategy developed by Traversa et al. (Bull Earthq Eng, 2017. doi: 10.1007/s10518-017-0178-7) companion paper, to compute their Mw magnitude and depth. Macroseismic data and epicentral location and intensity used both in IPE calibration and inversion process, are those of SISFRANCE without any revision. The inversion process allows the main macroseismic field specificities reported by SISFRANCE to be taken into account with an exploration tree approach. It also allows capturing the epistemic uncertainties associated with macroseismic data and to IPEs selection. For events that exhibit a poorly constrained macroseismic field (mainly old, cross border or off-shore earthquakes), joint inversion of Mw and depth is not possible, and depth needs to be fixed to calculate Mw. Regional a priori depths have been defined for this purpose based on analysis of earthquakes with a well constrained macroseismic field where joint inversion of Mw and depth is possible. As a result, 27% of SISFRANCE earthquake seismological parameters have been jointly inverted and for the other 73% Mw has been calculated assuming a priori depths. The FCAT-17 catalogue is composed of the SIGMA historical parametric catalogue (magnitude range between 3.5 up to 7.0), covering from AD463 to 1965, and of the SiHex instrumental one, extending from 1965 to 2009. Historical part of the catalogue results from an automatic inversion of SISFRANCE data. A quality index is estimated for each historical earthquake according to the way the events are processed. All magnitudes are given in Mw which makes this catalogue directly usable as an input for probabilistic or deterministic seismic hazard studies. Uncertainties on magnitudes and depths are provided for historical earthquakes following calculation scheme presented in Traversa et al. (2017). Uncertainties on magnitudes for instrumental events are from Cara et al. (J Seismol 21:551–565, 2017. doi: 10.1007/s10950-016-9617-1).  相似文献   

4.
Parameterization of historical earthquakes in Switzerland   总被引:1,自引:1,他引:0  
Macroseismic earthquake parameters of historical events have been reassessed in the framework of the update of the Earthquake Catalogue of Switzerland ECOS-09. The Bakun and Wentworth method (Bakun and Wentworth 1997) has been used to assess location, magnitude, and, when possible, focal depth. We apply a two-step procedure. Intensity attenuation is assessed first by fitting a model with a logarithmic and a linear term, using a set of 111 earthquakes. The magnitude range is 3 and 5.8. Then, intensity to magnitude relation is developed. A subset of the 111 events, all having an instrumental moment magnitude, was used to perform this intensity to magnitude calibration. Five final calibration strategies were developed based on different intensity calibration datasets, regionalized or non-regionalized models, and fixed or variable source depth. The final assessment of the macroseismic earthquake parameters is based on an expert judgment procedure, using the results derived from all five strategies, and taking into consideration the historical knowledge available for the particular earthquake. A bootstrap procedure has been applied to assess the uncertainty of parameters. Indicative lower and upper bounds of uncertainty are derived from distributions of location and magnitude for a number of events, obtained through bootstrap sampling of the intensity field and of the single intensity values. The final uncertainties are given in terms of parameter uncertainty classes already used in previous versions of the earthquake catalogue of Switzerland.  相似文献   

5.
The macroseismic field of the Balkan area   总被引:1,自引:0,他引:1  
A catalogue of 356 macroseimic maps which are available for the Balkan area was compiled, including information on the source parameters of the corresponding earthquakes, the macroseismic parameters of their strength and their macroseismic field. The data analysis of this catalogue yields new empirical relations for attenuation, which can be applied for the calibration of historical events, modelling of isoseismals and seismic hazard assessment. An appropriate analysis allowed the separation and estimation of the average values of the geometrical spreading, n, and anelastic attenuation factor, c, for the examined area which were found equal to –3.227 ± 0.112 and –0.0033 ± 0.0010. Scaling relations for the focal macroseismic intensity, If, and the epicentral intensity I0, versus the earthquake moment magnitude were also determined for each Balkan country. A gradual decrease of the order of 0.5 to 1 intensity unit is demonstrated for recent (after 1970) earthquakes in Greece. Finally the depths of the examined earthquakes as they robustly determined (error <5 km) on the basis of macroseismic data were found to have small values ( 10 km). However large magnitude earthquakes show higher focal depths ( 25 km), in accordance with an increase of the seismic fault dimensions for such events.  相似文献   

6.
An evaluation of the magnitude of historical earthquakes is proposed, through an empirical relation based on a felt area of historical earthquakes derived from a vectorial modelling of macroseismic intensity distribution.  相似文献   

7.
本文借鉴直接拟合烈度数据点和枚举震源参数的做法,设计了一种利用烈度资料估计6级左右历史地震震源参数的方法.该方法对震源参数所有可能的组合进行枚举,采用地震波场模拟计算转换的理论烈度值,利用模型选择方法评估各可能的震源参数组合模型与历史破坏记录推断的地震烈度数据点的拟合程度,对震源参数做出估计.该方法充分考虑到历史资料相对稀少对震源参数估计的影响,以多种震源参数估计结果和相应权重值来定量化表示估计的不确定性.通过对给定震中位置、震源深度和滑动角的Bootstrap数值恢复检测与2006年美国Parkfield 6.0级地震实例的测试,表明该方法得出的震源参数估计结果具有统计一致性和一定的无偏性.将该方法应用于1882年河北深县6级地震的震源参数估计,结果显示东西向旧城北断层或何庄断层及北东东走向的深西断层为深县地震的发震构造的可能性较大.  相似文献   

8.
Pioneering work by Nicolas Ambraseys and many collaborators demonstrates both the tremendous value of macroseismic data and the perils of its uncritical assessment. In numerous publications he shows that neglect of original sources and/or failure to appreciate the context of historical accounts, as well as use of unreliable indicators such as landsliding to determine intensities, commonly leads to inflated magnitude estimates for historical earthquakes. The U.S. Geological Survey “Did You Feel It?” (DYFI) system, which now collects and systematically interprets thousands of first-hand reports from felt earthquakes, provides the opportunity to explore further the biases associated with traditional intensity distributions determined from written (media or archival) accounts. I briefly summarize and further develop the results of Hough (2013), who shows that traditional intensity distributions imply more dramatic damage patterns than are documented by more spatially rich DYFI data, even when intensities are assigned according to the conservative practices established by Ambraseys’ work. I further consider the separate intensity–attenuation relations that have been developed to characterize intensities for historical and modern earthquakes in California, using traditionally assigned intensities and DYFI intensities, respectively. The results support the conclusion that traditionally assigned intensity values tend to be inflated by a fundamental bias towards reporting of dramatic rather than representative effects. I introduce an empirical correction-factor approach to correct for these biases. This allows the growing wealth of well-calibrated DYFI data to be used as calibration events in the analysis of historical earthquakes.  相似文献   

9.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

10.
Comparison between accelerometric and macroseismic observations is made for three M w?=?4.5 earthquakes, which occurred in north-eastern France and south-western Germany in 2003 and 2004. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 and 180 km from the epicentres. Macroseismic data are based on French Internet reports. In addition to the single questionnaire intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions bearing different physical meanings: (1) “vibratory motions of small objects”, (2) “displacement and fall of objects”, (3) “acoustic noise” and (4) “personal feelings”. Best correlations between macroseismic and instrumental observations are obtained when the macroseismic parameters are averaged over 10-km-radius circles around each station. Macroseismic intensities predicted by published peak ground velocity (PGV)–intensity relationships agree with our observed intensities, contrary to those based on peak ground acceleration (PGA). Correlation between the macroseismic and instrumental data for intensities between II and V (EMS-98) is better for PGV than for PGA. Correlation with the response spectra exhibits clear frequency dependence for all macroseismic parameters. Horizontal and vertical components are significantly correlated with the macroseismic parameters between 1 and 10 Hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 Hz, a clear lack of correlation between macroseismic and instrumental observations exists. It could be due to a combination of the decrease in the energy signal above 10 Hz, a high level of anthropogenic noise and an increase in variability in soil conditions. Above 25 Hz, the correlation coefficients between the acceleration response spectra and the macroseismic parameters are close to the PGA correlation level.  相似文献   

11.
In the framework of the SIGMA project, a study was launched to develop a parametric earthquake catalog for the historical period, covering the metropolitan territory and calibrated in Mw. A set of candidate calibration events was selected corresponding to earthquakes felt over a part of the French metropolitan territory, which are fairly well documented both in terms of macroseismic intensity distributions (SisFrance BRGM-EDF-IRSN) and magnitude estimates. The detailed analysis of the macroseismic data led us to retain only 30 events out of 65 with Mw ranging from 3.6 to 5.8. In order to supplement the dataset with data from larger magnitude events, Italian earthquakes were also considered (11 events posterior to 1900 with Mw?≥?6.0 out of 15 in total), using both the DBMI11 macroseismic database (Locati et al. in Seismol Resour Lett 85(3):727–734, 2014) and the parametric information from the CPTI11 (Rovida et al. in CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani Istituto Nazionale di Geofisica et Vulcanologia, Milano, Bologna, 2011.  https://doi.org/10.6092/ingv.it-cpti11). To avoid introducing bias related to the differences in terms of intensity scales (MSK vs. MCS), only intensities smaller than or equal to VII were considered (Traversa et al. in On the use of cross-border macroseismic data to improve the estimation of past earthquakes seismological parameters, 2014). Mw and depth metadata were defined according to the Si-Hex catalogue (Cara et al. in Bull Soc Géol Fr 186:3–19, 2015.  https://doi.org/10.2113/qssqfbull.186.1.3), published information, and to the specific worked conducted within SIGMA related to early instrumental recordings (Benjumea et al. in Study of instrumented earthquakes that occurred during the first part of the 20th century (1905–1962), 2015). For the depth estimates, we also performed a macroseismic analysis to evaluate the range of plausible estimates and check the consistency of the solutions. Uncertainties on the metadata related to the calibration earthquakes were evaluated using the range of available alternative estimates. The intensity attenuation models were developed using a one-step maximum likelihood scheme. Several mathematical formulations and sub-datasets were considered to evaluate the robustness of the results (similarly to Baumont and Scotti in Accounting for data and modeling uncertainties in empirical macroseismic predictive equations (EMPEs). Towards “European” EMPEs based on SISFRANCE, DBMI, ECOS macroseismic database, 2008). In particular, as the region of interest may be characterized by significant laterally varying attenuation properties (Bakun and Scotti in Geophys J Int 164:596–610, 2006; Gasperini in Bull Seismol Soc Am 91:826–841, 2001), we introduced regional attenuation terms to account for this variability. Two zonation schemes were tested, one at the national scale (France/Italy), another at the regional scale based on the studies of Mayor et al. (Bull Earthq Eng, 2017.  https://doi.org/10.1007/s10518-017-0124-8) for France and Gasperini (2001) for Italy. Between and within event residuals were analyzed in detail to identify the best models, that is, the ones associated with the best misfit and most limited residual trends with intensity and distance. This analysis led us to select four sets of models for which no significant trend in the between- and within-event residuals is detected. These models are considered to be valid over a wide range of Mw covering?~?3.5–7.0.  相似文献   

12.
This study aims to develop a new earthquake strong motion-intensity catalog as well as intensity prediction equations for Iran based on the available data. For this purpose, all the sites which had both recorded strong motion and intensity values throughout the region were first searched. Then, the data belonging to the 306 identified sites were processed, and the results were compiled as a new strong motion-intensity catalog. Based on this new catalog, two empirical equations between the values of intensity and the ground motion parameters (GMPs) for the Iranian earthquakes were calculated. At the first step, earthquake “intensity” was considered as a function of five independent GMPs including “Log (PHA),” “moment magnitude (MW),” “distance to epicenter,” “site type,” and “duration,” and a multiple stepwise regression was calculated. Regarding the correlations between the parameters and the effectiveness coefficients of the predictors, the Log (PHA) was recognized as the most effective parameter on the earthquake “intensity,” while the parameter “site type” was removed from the equations since it was determines as the least significant variable. Then, at the second step, a simple ordinary least squares (OLS) regression was fitted only between the parameters intensity and the Log (PHA) which resulted in more over/underestimated intensity values comparing to the results of the multiple intensity-GMPs regression. However, for rapid response purposes, the simple OLS regression may be more useful comparing to the multiple regression due to its data availability and simplicity. In addition, according to 50 selected earthquakes, an empirical relation between the macroseismic intensity (I0) and MW was developed.  相似文献   

13.
As large destructive seismic events are not frequent in Algeria, anexhaustive knowledge of the historical seismicity is required to have arealistic view of seismic hazard in this part of the world. This research workpresents a critical reappraisal of seismicity in the north-eastern Algeria forseismotectonic and seismic hazard purposes. This part of work focuses onthe seismicity of pre-1900 period for the area under consideration[33°N-38°N, 4°E-9.5°E]. By going back tothe available documentary sources and evaluating and analysing the eventsin geographical, cultural and historical context, it has been possible toidentify 111 events, from 1850–1899, which are not reported in therecent Algerian catalogue. Several spurious events, reported in standardlistings, have been deleted and nine unknown events have been discovered.It is quite clear that macroseismic information derived from press reportsand published documents in Algeria, under certain conditions, is veryincomplete, even for destructive earthquakes, located in the countrysideaway from communication centres. One of the reasons for this iscensorship, noticeable during the colonisation period. Critical analysis ofnewly collected information has allowed the determination and/or theimprovement of the macroseismic parameters of each event, such aslocation, maximum epicentral intensity and magnitude to produce anearthquake catalogue as homogeneous and complete as the available data,for the zone under study. The criteria used in this research are explainedand eight historical earthquakes have been the subject of retrospectivemacroseismic field construction.The investigation of historical earthquakes is one of the most important taskin studying seismotectonic for seismic hazard evaluation purposes.  相似文献   

14.
In western Europe, the knowledge of long-term seismicity is based on reliable historical seismicity and covers a time period of less than 700 years. Despite the fact that the seismic activity is considered as low in the region extending from the Lower Rhine Embayment to England, historical information collected recently suggests the occurrence of three earthquakes with magnitude around 6.0 or greater. These events are a source of information for the engineer or the scientist involved in mitigation against large earthquakes. We provide information relevant to this aspect for the Belgian earthquake of September 18, 1692. The severity of the damage described in original sources indicates that its epicentral intensity could be IX (EMS-98 scale) and that the area with intensity VII and greater than VII has at least a mean radius of 45 km. Following relationships between average macroseismic radii and magnitude for earthquakes in stable continental regions, its magnitude Ms is estimated as between 6.0 and 6.5. To extend in time our knowledge of the seismic activity, we conducted paleoseismic investigations in the Roer Graben to address the question of the possible occurrence of large earthquakes with coseismic surface ruptures. Our study along the Feldbiss fault (the western border of the graben) demonstrates its recent activity and provides numerous lines of evidence of Holocene and Late Pleistocene large earthquakes. It suggests that along the 10 km long Bree fault scarp, the return period for earthquakes with magnitude from 6.2 to 6.7 ranges from 10,000 to 20,000 years during the last 50,000 years. Considering as possible the occurrence of similar earthquakes along all the Quaternary faults in the Lower Rhine Embayment, a large earthquake could occur there each 500–1000 years. These results are important in two ways. (i) The evidence that large earthquakes occur in western Europe in the very recent past which is not only attested by historical sources, but also suggested by paleoseismic investigations in the Roer Graben. (ii) The existence of a scientific basis to better evaluate the long-term seismicity in this part of Europe (maximal magnitude and return period) in the framework of seismic hazard assessment.  相似文献   

15.
A multi-parametric study of empirical relationships between macroseismic data and magnitude is presented for the Italian region by the analysis of a new extended data set concerning 146 earthquakes. The available magnitude determinations include all of the most intense earthquakes which occurred in Italy in the last century and have been obtained by an accurate revision of original instrumental data. Intensity data have been revised and upgraded on the basis of the most recent studies: only local intensities directly documented have been used. Macroseismic determinations ofM s ,m B andM wa magnitudes have been performed. The empirical relationships between maximum felt intensity (I max ) and magnitude have been determined by the use of a distribution-free approach and a linear regression analysis. This last parameterization allows for the explanation of more than 60% of the variation in magnitude. In order to improve these results, the linear dependence between magnitude,I max and average distances (in logarithm) corresponding to fixed attenuation values has been explored. The comparison between instrumental magnitudes and corresponding macroseismic estimates obtained from empirical relationships shows that the respective uncertainties are comparable.  相似文献   

16.
The parametric catalogues of historical earthquakes in East Siberia contain large data gaps. Among these is a 15-year period in the late nineteenth century (1886–1901). This period was not covered by any of macroseismic catalogues known; neither acquisition nor systematization of macroseismic data was ever performed for that purpose. However, 15 years is a rather long period in which large seismic events may have occurred. The present paper deals with the previously unknown earthquake that occurred on November 13, 1898. The primary macroseismic data were taken from regional periodicals. On the strength of all the evidence obtained, the earthquake epicenter is localized in Western Transbaikalia, near the western end of the Malkhansky Range; the magnitude is estimated at M?=?5.9. The information about the large earthquake of November 13, 1898 provides filling significant gaps in knowledge for seismicity in Western Transbaikalia and a better understanding of seismic potential of faults therein. The obtained results show that the periods of seismic quiescence in catalogues may be related to insufficient information on seismicity of Eastern Siberia in the historical past rather than to the absence of large earthquakes.  相似文献   

17.
Statistical analyses on a catalogue of instrumental data for earthquakes in northeastern Italy since 1900 are presented. The different types of magnitude, which are the main parameters under study, have been evaluated so as to be as homogeneous as possible. Comparisons of the different magnitude values show linear dependence, at least in the medium magnitude range represented by the available data set. Correlations between the magnitude most significant for this region and chosen macroseismic data indicate a methodology for assessing the macroseismic magnitude of historical earthquakes which seems to be stable.  相似文献   

18.
Synthetic isoseismals of three earthquakes in California and Nevada   总被引:1,自引:0,他引:1  
Recent tests on a series of earthquakes in California and Nevada suggest that in some regions the approximate shapes of the territories with equal earthquake-induced damage (expressed in terms of macroseismic intensity) could be synthetically traced out with a simple formula. This formula takes into account some gross features of the source: depth and length, unilateral or bilateral rupture, radiation patterns, rupture velocity, and directivity. Having been formulated on an empirical basis, the formula is however compatible with the so-called asymptotic approach, in which the far-field component of the Green's function is used. This paper presents the synthetic isoseismals of the earthquakes at Cedar Mountain, Nevada, 1932; Fairview Peak-Dixie Valley, Nevada, 1954; and Coalinga, California, 1983. An overall consistency, from acceptable to remarkable, between the observed intensity patterns and the synthetically back-predicted intensity has been obtained for them. Where the detailed modelling techniques available today are inapplicable, due to insufficient information on the features of the seismic sources, or to save time and money, the new formula may be utilizable for improving seismic hazard calculations.The formula was also used inversely for back-predicting geometric-kinematic parameters of the Coalinga 1983 earthquake from macroseismic maps. This gave characteristics for its source which are in good agreement with the majority of data inferred from modelling and from analyzing modern instrumental recordings. This striking result opens new perspectives in retrieving information on the source of ancient earthquakes for which only macroseismic information is available.  相似文献   

19.
Continental intraplate regions are characterized by uniform stresses over thousands of kilometers. Local stresses, with wavelengths of tens to hundreds of kilometers can accumulate at inhomogeneities lying within these regional fields. A variety of geological structures, herein called local stress concentrators (LSCs), act as elastic inhomogeneities. The temporal buildup of stress depends on the particular structure and its geometrical relationship with the regional stress field. The interaction of the local and the regional stress fields can result in the rotation of the latter over wavelengths of tens to hundreds of kilometers. This rotation can be detected by direct measurement or from seismicity data. Intraplate earthquakes (IPEs) result when the local stresses become comparable with their regional counterparts, i.e., hundreds of megapascals. Globally, most of the seismic energy release associated with IPEs occurs within old rifts which contain LSCs most favorable for stress buildup by stress inversion. Of the various LSCs, stepover en echelon faults are associated the largest IPEs. In low tectonic strain rate regions, IPEs are associated with larger stress drops. With the availability of a variety of LSCs, there is generally an absence of repeat earthquakes. Instead, successive earthquakes occur on different structures, leading to the observation of “roaming” earthquakes. These observations suggest a need for a reevaluation of seismic hazard estimation techniques. This study addresses some of these facets of the nature of IPEs with global examples, including a unique, detailed seismicity and geodetic data set collected in a dozen years following the 2001 M 7.7 Bhuj earthquake in western India.  相似文献   

20.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号