首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seismic observations exhibit the presence of abnormal b-values prior to numerous earthquakes. The time interval from the appearance of abnormal b-values to the occurrence of mainshock is called the precursor time. There are two kinds of precursor times in use: the first one denoted by T is the time interval from the moment when the b-value starts to increase from the normal one to the abnormal one to the occurrence time of the forthcoming mainshock, and the second one denoted by T p is the time interval from the moment when the abnormal b-value reaches the peak one to the occurrence time of the forthcoming mainshock. Let T* be the waiting time from the moment when the abnormal b-value returned to the normal one to the occurrence time of the forthcoming mainshock. The precursor time, T (usually in days), has been found to be related to the magnitude, M, of the mainshock expected in a linear form as log(T)?=?q?+?rM where q and r are the coefficient and slope, respectively. In this study, the values of T, T p , and T* of 45 earthquakes with 3?≤?M?≤?9 occurred in various tectonic regions are compiled from or measured from the temporal variations in b-values given in numerous source materials. The relationships of T and T p , respectively, versus M are inferred from compiled data. The difference between the values of T and T p decreases with increasing M. In addition, the plots of T*/T versus M, T* versus T, and T* versus T-T* will be made and related equations between two quantities will be inferred from given data.  相似文献   

2.
The homologues temperature of a crystalline material is defined as T/T_m, where T is temperature and T_m is the melting(solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system,(Mg,Fe)_2SiO_4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite(Fe_2SiO_4), the triple point of fayalite-Fe_2SiO_4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/T_m of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/T_m of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/T_m of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/T_m 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/T_m is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/T_m of olivine need further investigation. Below 6.4 GPa(200 km), T/T_m of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10~(-12)–10~(-15) s~(-1) and low stress in the upper mantle, the [100](010) slip system(A-type fabric) becomes dominant when T/T_m 0.55–0.60. When T/T_m 0.55–0.60, [001] slip is easier and low T/T_m favors the operation of [001](100) slip system(C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/T_m. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.  相似文献   

3.
Using bathymetry and altimetric gravity anomalies, a 1° 9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.  相似文献   

4.
This paper presents a new clustering procedure based on K-means and self-organizing map (SOM) network algorithms for classification of earthquake ground-motion records. Six scalar indicators are used in data analysis for describing the frequency content features of earthquake ground motions, named as the average spectral period (T avg ), the mean period (T m ), the smoothed spectral predominant period (T 0), the characteristic period (T 4.3), the predominant period based on velocity spectrum (T gSv ), and the shape factor (Ω). Different clustering validity indexes were applied to determine the best estimates of the number of clusters on real and synthetic data. Results showed the high performance of proposed procedure to reveal salient features of complex seismic data. The comparison between the results of clustering analyses recommend the smoothed spectral predominant period as an effective indicator to describe ground-motion classes. The results also showed that K-means algorithm has better performance than SOM algorithm in identification and classification procedure of ground-motion records.  相似文献   

5.
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Q m, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: (1) High Q m started to appear from Nov. 9, 1999. The events giving the deduced high Q m value clustered in a region with their epicenter distances being between 32 and 46 km to the Yingkou station. This Q m versus distance observation obviously deviates from the normal trend of Q m linearly increasing with distance. (2) The average Q m before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Q m between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Q m after the M=5.1 event is 204.  相似文献   

6.
A visibility graph (VG) is a rather novel statistical method in earthquake sequence analysis; it maps a time series into networks or graphs, converting dynamical properties of the time series into topological properties of networks. By using the VG approach, we defined the parameter window mean interval connectivity time <Tc>, that informs about the mean linkage time between earthquakes. We analysed the time variation of <Tc> in the aftershock-depleted catalogue of Kachchh Gujarat (Western India) seismicity from 2003 to 2012, and we found that <Tc>: i) changes through time, indicating that the topological properties of the earthquake network are not stationary; and, ii) appeared to significantly decrease before the largest shock (M5.7) that occurred on March 7, 2006 near the Gedi fault, an active fault in the Kachchh region.  相似文献   

7.
The forecasting of evaporative loss (E) is vital for water resource management and understanding of hydrological process for farming practices, ecosystem management and hydrologic engineering. This study has developed three machine learning algorithms, namely the relevance vector machine (RVM), extreme learning machine (ELM) and multivariate adaptive regression spline (MARS) for the prediction of E using five predictor variables, incident solar radiation (S), maximum temperature (T max), minimum temperature (T min), atmospheric vapor pressure (VP) and precipitation (P). The RVM model is based on the Bayesian formulation of a linear model with appropriate prior that results in sparse representations. The ELM model is computationally efficient algorithm based on Single Layer Feedforward Neural Network with hidden neurons that randomly choose input weights and the MARS model is built on flexible regression algorithm that generally divides solution space into intervals of predictor variables and fits splines (basis functions) to each interval. By utilizing random sampling process, the predictor data were partitioned into the training phase (70 % of data) and testing phase (remainder 30 %). The equations for the prediction of monthly E were formulated. The RVM model was devised using the radial basis function, while the ELM model comprised of 5 inputs and 10 hidden neurons and used the radial basis activation function, and the MARS model utilized 15 basis functions. The decomposition of variance among the predictor dataset of the MARS model yielded the largest magnitude of the Generalized Cross Validation statistic (≈0.03) when the T max was used as an input, followed by the relatively lower value (≈0.028, 0.019) for inputs defined by the S and VP. This confirmed that the prediction of E utilized the largest contributions of the predictive features from the T max, verified emphatically by sensitivity analysis test. The model performance statistics yielded correlation coefficients of 0.979 (RVM), 0.977 (ELM) and 0.974 (MARS), Root-Mean-Square-Errors of 9.306, 9.714 and 10.457 and Mean-Absolute-Error of 0.034, 0.035 and 0.038. Despite the small differences in the overall prediction skill, the RVM model appeared to be more accurate in prediction of E. It is therefore advocated that the RVM model can be employed as a promising machine learning tool for the prediction of evaporative loss.  相似文献   

8.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

9.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

10.
An advanced method for estimating the earthquake grouping parameters Rcr and Tcr is proposed in order to identify interrelated seismic events. The method pursues continuity with the previous algorithm suggested in (Mirzoev, 1980; 1988a; 1988b; 1992; Mirzoev and Azizova, 1983; 1984) but uses a more realistic spatial model of the background seismicity. All the calculations in the method can be fully formalized and a preliminary expert estimation of the parameters is not required. The method provides stable estimates of the critical radius Rcr and time Tcr of grouping. Group earthquakes make up 50 to 75% of their total number.  相似文献   

11.
Conventional f?x empirical mode decomposition (EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events. However, when a seismic event is not horizontal, the use of f?x EMD is harmful to most useful signals. Based on the framework of f?x EMD, this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals. Compared with conventional f?x EMD, f?x predictive filtering, and f?x empirical mode decomposition predictive filtering, the new approach can preserve more useful signals and obtain a relatively cleaner denoised image. Synthetic and field data examples are shown as test performances of the proposed approach, thereby verifying the effectiveness of this method.  相似文献   

12.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

13.
A spectral analysis of simultaneous diurnal variations in the E z component of the quasi-static electric field in the near-Earth atmosphere, VLF radio noise, and the horizontal component of the geomagnetic field, observed at Kamchatka in September 1999, has been performed. These geophysical parameters are indirectly used to study wave processes in the near-Earth atmosphere and in the ionospheric D and dynamo regions within the band of periods of internal gravity waves (T = 0.5?3.5 h). The correlation method in the frequency region is used to analyze the interrelation between the wave processes in these atmospheric regions. The power cross-spectra of various pairs of geophysical parameters have been studied depending on meteorological, seismic, and geomagnetic activities. It is shown that the oscillations in the power spectra in the T ~ 1–1.5 h band of periods are caused by the sources of internal gravity waves in the near-Earth atmosphere and by the remote sources above the dynamo region of the ionosphere within the T ~ 1.5–3 h band of periods.  相似文献   

14.
It is proposed to evaluate two theoretical characteristics, i.e., BOD (biochemical oxygen demand) and k 0 (the coefficient of oxidation rate by new formulas based on two experimental variables: BOD T and BOD2T (biochemical oxygen consumption in two periods T and 2T day, respectively). The formulation and an analytical solution are given for a direct problem describing the process of biochemical oxidation of organic matter (OM) in a water volume in the absence of aeration (e.g., in a water body under ice or in a sealed flask used to measure biochemical oxygen consumption). The problem is solved based on the closed (modified) Streeter–Phelps system. Unlike the classical Streeter–Phelps system, the closed system excludes physically incorrect solutions (e.g., negative concentrations of dissolved oxygen (DO)) [4]. The solution of the direct problem is used to formulate an inverse problem, whose solution is given in the form of formulas for evaluating BOD and k 0. These formulas are used to compile tables to illustrate the essence of the proposed method.  相似文献   

15.
The thermal structure of continental lithosphere (the temperature, heat flows, and heat generation in the crust and lithosphere) is reconstructed from geothermal, seismic, and petrologic data. The first step is the determination of the temperature profile from absolute P and S wave velocities (T P, S ). The T P, S profile is then adjusted to a thermophysical model of conductive transfer. In addition, the surface heat flow and the T P, S profile are used to determine heat generation, thicknesses of crustal layers, and heat flow components in the crust and lithosphere. A feature inherent in the solution of the thermophysical inverse problem obtained in this paper is the use of constraints derived from the temperature reconstruction by seismic data inversion. As a result, the analytical dependence of the temperature on depth, the intensity of radiogenic heat sources in the crust, and heat flow components in the crust and lithosphere are determined.  相似文献   

16.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

17.
Aftershock hazard maps contain the essential information for search and rescue process, and re-occupation after a main-shock. Accordingly, the main purposes of this article are to study the aftershock decay parameters and to estimate the expected high-frequency ground motions (i.e., Peak Ground Acceleration (PGA)) for recent large earthquakes in the Iranian plateau. For this aim, the Ahar-Varzaghan doublet earthquake (August 11, 2012; M N =6.5, M N =6.3), and the Ilam (Murmuri) earthquake (August 18, 2014 ; M N =6.2) have been selected. The earthquake catalogue has been collected based on the Gardner and Knopoff (Bull Seismol Soc Am 64(5), 1363-1367, 1974) temporal and spatial windowing technique. The magnitude of completeness and the seismicity parameters (a,??b) and the modified Omori law parameters (P,??K,??C) have been determined for these two earthquakes in the 14, 30, and 60 days after the mainshocks. Also, the temporal changes of parameters (a,??b,??P,??K,??C) have been studied. The aftershock hazard maps for the probability of exceedance (33%) have been computed in the time periods of 14, 30, and 60 days after the Ahar-Varzaghan and Ilam (Murmuri) earthquakes. For calculating the expected PGA of aftershocks, the regional and global ground motion prediction equations have been utilized. Amplification factor based on the site classes has also been implied in the calculation of PGA. These aftershock hazard maps show an agreement between the PGAs of large aftershocks and the forecasted PGAs. Also, the significant role of b parameter in the Ilam (Murmuri) probabilistic aftershock hazard maps has been investigated.  相似文献   

18.
Effects of temporally correlated infiltration on water flow in an unsaturated–saturated system were investigated. Both white noise and exponentially correlated infiltration processes were considered. The moment equations of the pressure head (ψ) were solved numerically to obtain the variance and autocorrelation functions of ψ at 14 observation points. Monte Carlo simulations were conducted to verify the numerical results and to estimate the power spectrum of ψ (S ψψ ). It was found that as the water flows through the system, the variance of the ψ (\( \sigma_{\psi }^{2} \)) were damped by the system: the deeper in the system, the smaller the \( \sigma_{\psi }^{2} \), and the larger the correlation timescale of the infiltration process (λ I ), the larger the \( \sigma_{\psi }^{2} \). The unsaturated–saturated system gradually filters out the short-term fluctuations of ψ and the damping effect is most significant in the upper part of the system. The fluctuations of ψ is non-stationary at early time and becomes stationary as time progresses: the larger the value of λ I , the longer the non-stationary period. The correlation timescale of the ψ (λ ψ ) increases with depth and approaches a constant value at depth: the larger the value of λ I , the larger the value of λ ψ . The results of the estimated S ψψ is consistent with those of the variance and autocorrelation function.  相似文献   

19.
The damping modification factor (DMF) has been extensively used in earthquake engineering to describe the variation of structural responses due to varied damping ratios. It is known that DMFs are dependent not only on structural dynamic properties but also on characteristics of ground motions. DMFs regulated in current seismic codes are generally developed based on far-fault ground motions and are inappropriately used in structural design where pulse-like near-fault ground motions are involved. In this paper, statistical investigation of the DMF is performed based on 50 carefully selected pulse-like near-fault ground motions. It is observed that DMFs for pulse-like ground motions exhibit significant dependence on the pulse period T p in a specific period range. If the period of the structure in response is close to the pulse period, the DMF attains the same level as that derived from far-fault ground motions; as the period of the structure is considerably larger or smaller than the pulse period T p , the response reduction effect by the increased damping ratio is generally small, except for large earthquakes with long pulse periods, which exhibit significant reduction of response for structures with periods smaller than T p . Based on the statistical results of DMFs, the empirical formulas for estimating DMFs for displacement, velocity and acceleration spectra are proposed, the effect of structural period, pulse period and damping ratio are considered in the formulas, and the formulas are designed to satisfy the specific reliability requirement in the period range of 0.1 < T/T p  < 1, which is of engineering interest.  相似文献   

20.
Applying segment-wise altimetry-based gravest empirical mode method to expendable bathythermograph temperature, Argo salinity, and altimetric sea surface height data in March, June, and November from San Francisco to near Japan (30° N, 145° E) via Honolulu, we estimated the component of the heat transport variation caused by change in the southward interior geostrophic flow of the North Pacific subtropical gyre in the top 700 m layer during 1993–2012. The volume transport-weighted temperature (TI) is strongly dependent on the season. The anomaly of TI from the mean seasonal variation, whose standard deviation is 0.14°C, was revealed to be caused mainly by change in the volume transport in a potential density layer of 25.0?25.5σ??. The anomaly of TI was observed to vary on a decadal or shorter, i.e., quasi-decadal (QD), timescale. The QD-scale variation of TI had peaks in 1998 and 2007, equivalent to the reduction in the net heat transport by 6 and 10 TW, respectively, approximately 1 year before those of sea surface temperature (SST) in the warm pool region, east of the Philippines. This suggests that variation in TI affects the warm pool SST through modification of the heat balance owing to the entrainment of southward transported water into the mixed layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号