首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.  相似文献   

2.
We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.  相似文献   

3.
The CUTLASS Finland radar, which comprises an integral part of the SuperDARN system of HF coherent radars, provides near continuous observations of high-latitude plasma irregularities within a field-of-view which extends over some four million square kilometres. Within the Finland radar field-of-view lie both the EISCAT mainland and EISCAT Svalbard incoherent scatter radar facilities. Since the CUTLASS Finland radar commenced operation, in February 1995, the mainland EISCAT UHF radar has been run in common programme 1 and 2 modes for a total duration exceeding 1000 h. Simultaneous and spatially coincident returns from these two radars over this period provide the basis for a comparison of irregularity drift veloCity and F-region ion veloCity. Initial comparison is limited to velocities from four intervals of simultaneous radar returns; intervals are selected such that they exhibit a variety of veloCity signatures including that characteristic of the convection reversal and a rapidly fluctuating veloCity feature. Subsequent comparison is on a statistical basis. The velocities measured by the two systems demonstrate reasonable correspondence over the veloCity regime encountered during the simultaneous occurrence of coherent and incoherent scatter; differences between the EISCAT UHF measurements of F-region ion drift and the irregularity drift velocities from the Finland radar are explained in terms of a number of contributing factors including contamination of the latter by E-region echoes, a factor which is investigated further, and the potentially deleterious effect of discrepant volume and time sampling intervals.  相似文献   

4.
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Troms and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.  相似文献   

5.
Observations of a flux transfer event (FTE) have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ≈226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF) which is estimated to have reached the subsolar magnetopause ≈77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole) is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.  相似文献   

6.
The CUTLASS Finland radar has been run in a two-beam special scan mode, which offered excellent temporal and spatial information on the flows in the high-latitude ionosphere. A detailed study of one day of this data revealed a convection reversal boundary (CRB) in the CUTLASS field of view (f.o.v) on the dayside, the direction of plasma flow either side of the boundary being typical of a dawn-cell convection pattern. Poleward of the CRB a number of pulsed transients are observed, seemingly moving away from the radar. These transients are identified here as the ionospheric signature of flux transfer events (FTEs). Equatorward of the CRB continuous backscatter was observed, believed to be due to the return flow on closed field lines. The two-beam scan offered a new and innovative opportunity to determine the size and velocity of the ionospheric signatures associated with flux transfer events and the related plasma flow pattern. The transient signature was found to have an azimuthal extent of 1900 ± 900 km and an poleward extent of 250 km. The motion of the transient features was in a predominantly westward azimuthal direction, at a velocity of 7.5 ± 3 km.  相似文献   

7.
The CUTLASS (Co-operative UK Twin Located Auroral Sounding System) Finland HF radar, whilst operating in a high spatial and temporal resolution mode, has measured the ionospheric signature of a naturally occurring ULF wave in scatter artificially generated by the Tromsø Heater. The wave had a period of 100 s and exhibited curved phase fronts across the heated volume (about 180 km along a single radar beam). Spatial information provided by CUTLASS has enabled an m-number for the wave of about 38 to be determined. This high-m wave was not detected by the IMAGE (International Monitor for Auroral Geomagnetic Effects) network of ground magnetometers, as expected for a wave of a small spatial scale size. These observations offer the first independent confirmation of the existence of the ground uncorrelated ULF wave signatures previously reported in measurements recorded from an HF Doppler sounder located in the vicinity of Tromsø. These results both demonstrate a new capability for geophysical exploration from the combined CUTLASS-EISCAT ionospheric Heater experiment, and provide a verification of the HF Doppler technique for the investigation of small scale ULF waves.  相似文献   

8.
本文分析了2004年2月11日11:00~11:40 UT期间Cluster卫星簇的磁通门磁力计FGM)、等离子体电子及电流试验仪(PEACE)和CUTLASS 芬兰雷达对多个磁通量传输事件(FTEs)的同时观测. 在此期间,Cluster卫星簇位于北半球外极隙区附近,并于11:18 UT左右穿出磁层顶进入磁鞘,四颗卫星同时观测到了多个FTEs, 其出现具有准周期性,周期约为130 s. 利用Cluster四颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,我们推断这些FTEs是尺度大小约为(0.87~1.81)RE的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致. CUTLASS芬兰雷达在相应的电离层区域观测到了明显的“极向运动雷达极光”结构,这些结构与Cluster卫星簇观测的FTEs有着很好的对应关系,它们是FTEs的雷达观测特征.  相似文献   

9.
During August 1998, the UK EISCAT special programme SP-UK-CSUB, which combines operation of both the mainland VHF and Svalbard UHF incoherent scatter radars, was run for several hours around magnetic midnight on four consecutive days. The CUTLASS Finland HF coherent scatter radar was, at these times, operating in a discretionary mode, sounding on all 16 beams, one at high-time resolution. This study presents a comparison of the velocities measured by coherent and incoherent techniques during the SP-UK-CSUB experiments. Agreement, particularly between the ion velocities measured by the EISCAT Svalbard radar and irregularity drift measurements by the Finland radar, is remarkable, thereby validating the scientific integrity of both data sets. This work highlights the substantive contribution to our understanding of the solar-terrestrial environment which can be made by use in concert of incoherent and HF coherent scatter radars.  相似文献   

10.
Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF). Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIFs evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.  相似文献   

11.
Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System) coherent scatter radar was employed to observe artificial field aligned irregularities (FAI) generated by the EISCAT (European Incoherent SCATter) heating facility at Tromso, Norway. The distribution of back-scatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170 ± 50 km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and O.OlV/m. Differences between field-aligned and vertical propagation heating are also presented.  相似文献   

12.
Initial backscatter occurrence statistics from the CUTLASS HF radars   总被引:2,自引:0,他引:2  
A statistical study of the occurrence of ground and ionospheric backscatter within the fields-of-view of the CUTLASS HF radars, at an operating frequency of 10 MHz, during the first 20 months of operation has been undertaken. The diurnal variation of the occurrence of backscatter and the range at which such backscatter is observed is found to be highly dependent on seasonal changes of the ionospheric electron density in both the E and F region, determined from ionosonde observations. In general, ionospheric backscatter is observed at far ranges during the local day in winter months and at near ranges during the local night in summer months. The Iceland radar observes more near-range E region backscatter than the Finland radar as a consequence of its more zonal look-direction. The dependence of the occurrence of backscatter on geomagnetic activity and radar operating frequency are also investigated. The occurrence of ground and ionospheric backscatter is discussed in terms of HF propagation modes and ionospheric electron densities as well as geophysical processes. A brief assessment of the possible impact of solar cycle variations on the observations is made and frequency management is discussed. Such a study, with its focus on the instrumental aspect of backscatter occurrence, is essential for a full interpretation of HF coherent radar observations.  相似文献   

13.
Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range) and persistent region of auroral F- and (later) E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL) and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5/10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.  相似文献   

14.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

15.
Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5○ invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2○ invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2○ during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.  相似文献   

16.
Characteristic signatures are often observed in HF radar range-time-intensity plots when travelling ionospheric disturbances (TIDs) are present. These signatures, in particular the variation of the F-region skip distance, have been synthesised using a ray tracing model. The magnitude of the skip variation is found to be a function of the peak electron density perturbation associated with the TID and radar frequency. Examination of experimental observations leads to an estimate of the peak electron density perturbation amplitude of around 25% for those TIDs observed by the CUTLASS radar system. The advantage of using the skip variation over the radar return amplitude as an indicator of density perturbation is also discussed. An example of a dual radar frequency experiment has been given. The investigation of the effect of radar frequency on the observations will aid the optimisation of future experiments.  相似文献   

17.
Experimental results are presented from ionospheric tomography, the EISCAT Svalbard radar and the CUTLASS HF radar. Tomographic measurements on 10 October 1996, showing a narrow, field-aligned enhancement in electron density in the post-noon sector of the dayside auroral zone, are related to a temporal increase in the plasma concentration observed by the incoherent scatter radar in the region where the HF radar indicated a low velocity sunwards convection. The results demonstrate the complementary nature of these three instruments for polar-cap ionospheric studies.  相似文献   

18.
Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.  相似文献   

19.
High time resolution data from the CUTLASS Finland radar during the interval 01:30–03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending 5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes 500 km and an eastward propagation velocity 0.75 km s–1. They occur in the morning sector (05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed.  相似文献   

20.
The Halley PACE HF radar has been operated in a new mode to provide very high time (10 s) and space (15 km) resolution measurements of the iono-spheric signatures of the cusp and the low-latitude boundary layer. The first data show that the iono-spheric signature of flux transfer events occur up to 300 km equatorward of regions showing the HF characteristics of the ionospheric cusp. Whilst larger flux transfer events are seen, on average, every 7 min, many much smaller and short-duration events have been identified. On one occasion DMSP data have been used to show that at least four flux transfer events are occurring simultaneously at the edge of the cusp over 2 h of MLT. There is strong, but not conclusive evidence, that reconnection at the magnetopause is both intermittent and patchy. These data also suggest that flux transfer events can be a significant contributor to the cross-polar cap potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号