首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regional distribution of metamorphic mineral assemblages in Mesozoic carbonate rocks of the Western Hohe Tauern allows the mapping of isograds based on the appearance of biotite+calcite and biotite+zoisite+calcite. The latter isograd corresponds approximately to the thermal maximum of the alpidic metamorphism in the central part of this area. An estimate of P, T, X fluid conditions can be obtained from phase relations among muscovite, biotite, chlorite, margarite, tremolite, zoisite, anorthite, quartz, calcite, and dolomite in the system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2 which approximates the composition of marls. Calculations based on various experimental and thermodynamic data have been made with emphasis on phase relations pertinent to a group of carbonate rocks with very low Fe and Na contents in non-opaque minerals. Significant and opposite deviations from the phase relations for stochiometric end member mineral compositions are due to the substitutions F-OH and Mg+Si-2Al. Consistency of observed and calculated phase relations is favoured by high F-contents. For the majority of carbonate rocks in the high metamorphic zone, maximum temperatures around 550° C, minimum pressures of 4–6 kb, and relatively low XCO2 values within the stability field of zoisite and of biotite+calcite+quartz are indicated.  相似文献   

2.
During Tertiary regional metamorphism in the Western Hohe Tauern, reaching maximum P, T conditions around 6 kb, 550° C in calcareous metasediments, reaction of pyrite to pyrrhotite is suggested by regional distribution and textural relations. In rocks without graphite pyrite is common at all metamorphic grades. In graphite bearing rocks, however, the dominant Fe-sulfide is pyrite at lower grade and pyrrhotite at higher grade. Furthermore, in graphite bearing high grade rocks, pyrite is restricted to assemblages with Mg-rich silicates. Several factors control pyrite-pyrrhotite relations. Increase of temperature is most effective by increase of pyrrhotite vs. pyrite stability field, shift of silicate-sulfide reactions toward the stability field of pyrrhotite, creation of sulfur free fluids from devolatilization reactions, and increase in the proportions of sulfur bearing fluid species. Presence of graphite also favours progress of pyrite to pyrrhotite reaction, as shown by different -stabilities and changes in the amount of minerals and fluid during metamorphic heating of graphite bearing and graphite free assemblages. An opposite effect is shown by assemblages with low Fe-contents in Fe-Mg silicates, due to the enlarged stability field of such minerals with increasing Mg (and F) content. Another inhibition of pyrite to pyrrhotite reaction is suggested to be due to relatively high sulfur contents of H2O rich infiltrating fluids.  相似文献   

3.
Several different metamorphic events — an early or prevariscian regional, a variscian contact and the alpine regional — on marbles from the Schlegeistal (Western Tauern Area, Tyrol, Austria) have resulted in a great variety of mineral assemblages. These assemblages include calcite, dolomite, tremolite, diopside, forsterite, clinohumite-titanianclinohumite-chondrodite, chlorite-serpentine, brucite, and boron minerals karlite and ludwigite.Microprobe analysis fo the minerals indicate that three different generations of chlorite minerals exist (clinochlor, penninite, Al-serpentine). The occurence of these chlorites is explained by formation of serpentine component during the last (alpine) regional metamorphism from the breakdown of forsterite, humite-minerals and diopside. The phase relations are described in the system CaO-MgO-SiO2-H2O-CO2-HF and a petrogenetic grid for the low low X F mineral region is given. The reactions are typical for ophicarbonate rocks, but include clinohumite and chlorite, due to the presence of F and minor amounts of Al2O3.  相似文献   

4.
Zusammenfassung In einem metamorphen Gebiet (westliche Hohe Tauern, Österreich), das P-T-Bedingungen von der niedrigen Grünschieferfazies bis zur Amphibolitfazies zeigt, wird die aufsteigende Metamorphose in ehemals pelitischen, mergeligen sowie in basaltischen und ultramafitischen Gesteinen beschrieben.Vergleiche mit experimentell ermittelten Gleichgewichtsdaten erlauben die Abschätzung einer Metamorphose-Temperatur von ca. 400 bis 600°C. Verschiedene Mineralparagenesen deuten auf eine druckbetonte Metamorphose.
Petrological investigation of metamorphic rocks of the Western part of the Hohe Tauern (Austria)
Summary In the Western part of the Hohe Tauern (Austria) P-T-conditions of metamorphism range from low greenschist facies to amphibolite facies. Progressive metamorphism is demonstrated in rocks of pelitic, calcareous, and basaltic composition and in ultramafic rocks.Comparison with experimental data indicate temperatures of 400 to 600°C. Various mineral parageneses indicate high-pressure metamorphism.


Mit 6 Abbildungen  相似文献   

5.
Summary Some types of Allanite (Orthite) are here described. They are found as assessory minerals in the rocks of the Hohe Tauern (penninic zone of the Eastern Alps) and in the hercynian foreland (Bohemian Massif). We distinguish Allanite I, II and III.The Allanite I (Hohe Tauern) is not isotropisized, but currently idiomorphic, with a xenomorphic rim of Clinozoisite. Where Allanite I is bordering Quartz or Potassium feldspar there is generally no rim of Clinozoisite. In the tectonites one observes granulated Allanite I and transformation of Allanite I to finegranied aggregates of Clinozoisite.Allanite II (Hohe Tauern) is found in intensely radioactive rocks. It is currently isotropisized, xenomorphic and surrounded by xenomorphic rims of Pistacite.Allanite III (Bohemian Massif) may be the oldest one and it is mostly isotropisized.The problems of the genesis and the age of crystallisation of Allanite during the history of our polymetamorphic rocks are shortly touched.

Mit 11 Textabbildungen

Herrn Prof. Dr.H. Leitmeier zum 80. Geburtstag gewidmet.  相似文献   

6.
Aluminous pelitic rocks of the Late Precambrian Horsethief Creek Group of southeastern British Columbia contain the assemblage chloritoidmuscovite-paragonite-quartz-chlorite (biotite zone). Additional members of the assemblage may include graphite, Fe-Mg carbonate, rutile, ilmenite and pyrite. No albite was detected. Lower grade pelitic rocks (chlorite zone) contain muscovite-chlorite and rare paragonite.Chloritoids from carbonate-free assemblages show a narrow range of composition (85±5 mol % Fe-chtd) and most porphyroblasts are zoned with higher Mn in cores and higher Mg in rims. For eight chloritoid-chlorite pairs, K D = (Mg/Fe chtd/Mg/Fe chl) = 0.188±0.0234.Correlation of these mineral assemblages with experimental and computed phase equilibria and oxygen isotope temperatures suggest a minimum pressure near 4.5 Kbar, a minimum temperature near 335 ° C and an upper limit on temperature near 460 ° C. Variation in X CO 2 content of fluids attending metamorphism is inferred from the alternate appearance of either Fe-Mg carbonate + rutile or ilmenite-bearing assemblages. The assemblage paragonite-chloritoid-quartz-Fe-Mg carbonate-rutile is inferred to be stable at a T near 360 ° C, an X CO 2 near 0.9 and P near 5 Kbar.  相似文献   

7.
The phase relations of pyroxenes, amphiboles and associated minerals in metamorphic rocks of the Franciscan Complex can be graphically depicted on a ternary diagram which has at its apices the metamorphic clinopyroxene end members, viz NaAl-NaFe3+-Ca(Fe2+, Mg). Phases are plotted by projection from a constant subassemblage of minerals. This analysis allows interpretation of the effects of pressure, temperature, bulk rock composition and fluid composition on stability of minerals within the Franciscan.Pyroxenes in meta-igneous rocks and metagraywackes have a limited compositional range and fall into two groups: the omphacites, with 50±5% diopside +hedenbergite component; and the jadeitic pyroxenes with 10±5% diopside+hedenbergite. Pyroxenes intermediate between these two groups are unstable relative to assemblages containing Na-amphibole+other minerals.Coexisting pyroxenes and amphiboles in eclogites and associated coarse blueschists comprise equilibrium assemblages, and the proportion of pyroxene to amphibole is a function of rock composition. Eclogites are stable at higher temperature than regionally developed fine-grained greenstones and blueschists in the Franciscan, and at higher pressure than amphibolites. X H2O fluid is not an important factor in the stability of Franciscan eclogite relative to amphibolite.  相似文献   

8.
Mineral assemblages and textures are described from clinopyroxene-bearingmeta-syenites and related rocks from a small area in the PenninicBasement Complex of the south-east Tauern Window. Evidence from mineral textures, mineral compositions and geobarometryindicate that the clinopyroxene, a sodic salite, crystallizedas part of an equilibrium albite-epidote-amphibolite faciesparagenesis in the 35–40 Ma meso-Alpine metamorphic event.Phase relations in co-facial quartz + albite + K-feldspar +sphene-bearing meta-syenites and meta-granites are examinedusing a projection from these minerals onto the plane (A12O3+ Fe2O3)-CaO-(MgO + FeO + MnO). The projection demonstratesthat salitic clinopyroxene can only be a stable phase in suchrocks if the bulk-rock Al/Na + K ratios are low. This is confirmedby comparing the whole-rock analyses of clinopyroxene-bearingmeta-syenites with those of clinopyroxene-free meta-syenitesand meta-granites. Mineral assemblages in a variety of lithologies from the south-eastTauern Window are used to construct a generalized AKM diagramfor magnesian albite + epidote + quartz-bearing rocks of thealbite-epidote-amphibolite facies. Thermochemical calculations indicate that the meta-syeniteswere metamorphosed at temperatures close to 500 C and at a pressureof 6+2 –4 kb. Fluids in equilibrium with meta-syeniteand meta-granite mineral assemblages had XH2O values of 0–95,assuming XH2O + XCO2O= 1.0.  相似文献   

9.
Amphibolite facies mafic rocks that consist mainly of hornblende, plagioclase and quartz may also contain combinations of chlorite, garnet, epidote, and, more unusually, staurolite, kyanite, sillimanite, cordierite and orthoamphiboles. Such assemblages can provide tighter constraints on the pressure and temperature evolution of metamorphic terranes than is usually possible from metabasites. Because of the high variance of most of the assemblages, the phase relationships in amphibolites depend on rock composition, in addition to pressure, temperature and fluid composition. The mineral equilibria in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH) model system demonstrate that aluminium content is critical in controlling the occurrence of assemblages involving hornblende with aluminous minerals such as sillimanite, kyanite, staurolite and cordierite. Except in aluminous compositions, these assemblages are restricted to higher pressures. The iron to magnesium ratio (XFe), and to a lesser extent, sodium to calcium ratio, have important roles in determining which (if any) of the aluminous minerals occur under particular pressure–temperature conditions. Where aluminous minerals occur in amphibolites, the P–T–X dependence of their phase relationships is remarkably similar to that in metapelitic rocks. The mineral assemblages of Fe‐rich amphibolites are typically dominated by garnet‐ and staurolite‐bearing assemblages, whereas their more Mg‐rich counterparts contain chlorite and cordierite. Assemblages involving staurolite–hornblende can occur over a wide range of pressures (4–10 kbar) at temperatures of 560–650 °C; however, except in the more aluminous, iron‐rich compositions, they occupy a narrow pressure–temperature window. Thus, although their occurrence in ‘typical’ amphibolites may be indicative of relatively high pressure metamorphism, in more aluminous compositions their interpretation is less straightforward.  相似文献   

10.
Recently published activity–composition (ax) relations for minerals in upper amphibolite‐ and granulite facies intermediate and basic rocks have expanded our ability to interpret the petrological evolution of these important components of the lower continental crust. If such petrological modelling is to be reliable, the abundances and compositions of phases calculated at the interpreted conditions of metamorphic equilibration should resemble those in the sample under study. Here, petrological modelling was applied to six granulite facies rocks that formed in different tectonic environments and reached different peak metamorphic pressure–temperature (PT) conditions. While phase assemblages matching those observed in each sample can generally be calculated at PT conditions that approximate those of peak metamorphism, a consistent discrepancy was found between the calculated and observed compositions of amphibole and clinopyroxene. In amphibole, Si, Ca and A‐site K are underestimated by the model, while Al and A‐site Na are overestimated; comparatively, in clinopyroxene, Mg and Si are generally underestimated, while Fe2+ and Al are typically overestimated, compared to observed values. One consequence is a reversal in the Fe–Mg distribution coefficient (KD) between amphibole and clinopyroxene compared to observations. Some of these mismatches are attributed to the incorrect partitioning of elements between the predicted amphibole and clinopyroxene compositions; however, other discrepancies are the result of the incorrect prediction of major substitution vectors in amphibole and clinopyroxene. These compositional irregularities affect mineral modal abundance estimates and in turn the position and size (in PT space) of mineral assemblage fields, the effect becoming progressively more marked as the modal abundance of hornblende increases; hence, this study carries implications for estimating PT conditions of high‐temperature metabasites using these new ax relations.  相似文献   

11.
Granulite facies magnesian metapelites commonly preserve a wide array of mineral assemblages and reaction textures that are useful for deciphering the metamorphic evolution of a terrane. Quantitative pressure, temperature and bulk composition constraints on the development and preservation of characteristic peak granulite facies mineral assemblages such as orthopyroxene + sillimanite + quartz are assessed with reference to calculated phase diagrams. In NCKFMASH and its chemical subsystems, peak assemblages form mainly in high‐variance fields, and most mineral assemblage changes reflect multivariant equilibria. The rarity of orthopyroxene–sillimanite–quartz‐bearing assemblages in granulite facies rocks reflects the need for bulk rock XMg of greater than approximately 0.60–0.65, with pressures and temperatures exceeding c. 8 kbar and 850 °C, respectively. Cordierite coronas mantling peak minerals such as orthopyroxene, sillimanite and quartz have historically been used to infer isothermal decompression P–T paths in ultrahigh‐temperature granulite facies terranes. However, a potentially wide range of P–T paths from a given peak metamorphic condition facilitate retrograde cordierite growth after orthopyroxene + sillimanite + quartz, indicating that an individual mineral reaction texture is unable to uniquely define a P–T vector. Therefore, the interpretation of P–T paths in high‐grade rocks as isothermal decompression or isobaric cooling may be overly simplistic. Integration of quantitative data from different mineral reaction textures in rocks with varying bulk composition will provide the strongest constraints on a P–T path, and in turn on tectonic models derived from these paths.  相似文献   

12.
田作林  张泽明  董昕 《岩石学报》2020,36(9):2616-2630
变质相平衡模拟是变质岩领域近几十年最重要的进展之一,它已经成为确定变质作用P-T-t轨迹和探索变质演化过程的有力工具。变质岩的矿物组合不但与其形成的温度(T)和压力(P)条件有关,而且受控于岩石的全岩成分(X)。但是变质岩通常是不均匀的并且往往保留两期以上的矿物组合,因此计算不同成分域或不同变质演化期次的有效全岩成分是模拟P-T视剖面图的核心问题之一。在中-低温变质岩中,石榴石变斑晶的生长会不断地将其核部成分"冻结"而不参与后续变质反应,这导致根据实测全岩成分计算的P-T视剖面图无法有效地模拟石榴石幔部或边部生长阶段的变质演化过程。"瑞利分馏法"和"球体积法"利用电子探针实测的石榴石成分环带可以模拟计算石榴石各个生长阶段所对应的有效全岩成分,本文推荐使用这两个方法来处理石榴石变斑晶的分馏效应问题。相比较而言,石榴石在高温变质岩中通常无法保留生长阶段的成分环带特征,这是因为石榴石成分在高温条件下会发生扩散再平衡,并同时与多数基质矿物达到热力学平衡,这时一般不需要考虑石榴石的分馏效应。但是高温变质岩通常会发生部分熔融并伴随熔体的迁移,进而改变岩石的有效全岩成分。因此,通过P-T视剖面图模拟熔体迁移前后的变质演化过程需要使用"相平衡法"计算迁移的熔体成分以及熔体迁移前后岩石的有效全岩成分。此外,后成合晶与反应边是变质岩中最常见的退变质反应结构,但是后成合晶或反应边中的矿物之间并未达到热力学平衡。这种情况需要结合岩相学观察和矿物成分,利用最小二乘法确定后成合晶或反应边中发生的平衡反应方程式,进而获取变质反应发生时的有效全岩成分并通过计算P-T视剖面图来估算退变质的温压条件。除此之外,岩石体系中三价铁(Fe2O3)和H2O含量的估算一直以来都是相平衡模拟研究中的难点,本文推荐使用P/T-X(Fe3+/FetotMH2O)视剖面图来确定这两个组分的含量,这是因为P/T-X图可以估算各个变质演化阶段或特定矿物组合的Fe2O3或H2O含量。  相似文献   

13.
High-pressure, low-temperature metamorphic Mn-rich quartzites from Andros and Evvia (Euboea) islands, Greece, situated in the Eocene blueschist belt of the Hellenides, reveal different Mn-Al-Ca-Mg-silicate assemblages in response to variable metamorphic grade. On Evvia, piemontite- and/or braunite-rich quartzites which are associated with low-grade blueschists (T<400° C, P> 8 kbar) show the principle mineral assemblage quartz + montite + sursassite + braunite + Mg-chlorite + hematite + rutile + titanite. The Mn-Al-silicate sursassite, basically (Mn2+, Ca)4 Al2(Al, Fe3+, Mn3+, Mg)4Si6O21(OH)7, thus far reported as a rare mineral, locally occurs as a rockforming mineral in cm- to m-thick layers. On Andros, higher-grade quartzites (T450–500° C, P>10 kbar) of similar composition contain the assemblage quartz + piemontite + spessartine + braunite + Mg-chlorite+hematite + phengite+ phlogopite + rutile. Rare sursassite is present only as a relict phase. Additional, mostly accessory minerals in quartzites from Evvia and Andros are ardennite, Na-amphibole, acmitic clinopyroxene, albite, apatite, and tourmaline. The chemical composition of the main phases is characterized in detail.Disequilibrium textures and mineral compositions in some samples from Andros and Evvia imply the reactions sursassite + braunite + quartz = spessartine+clinochlore±hematite + H2O + O2 (1) sursassite + braunite + phengite + quartz = spessartine + phlogopite±hematite + H2O + O2 (2) and in braunite-free assemblages sursassite + Mn3+Fe –1 3+ [hematite, piemontite] + hematite + quartz = spessartine + clinochlore + H2O+O2 (3) Reactions (1) to (3) have positive P-T slopes. They are considered to account for the breakdown of sursassite and the formation of spessartine during prograde metamorphism of the piemontite quartzites and related rocks. P-T data from Andros and Evvia and geological data from few other occurrences reported suggest sursassite+ quartz±braunite to be stable at T<400–450° C over a considerable pressure interval at least up to 10 kbar. Theoretical phase relations among Mn3+-Mn2+-silicates in the pseudoquaternary system Al-Mn-Ca-Mg with excess quartz, H2O, and O2 indicate that low-grade assemblages containing sursassite (±braunite±pumpellyite±viridine±piemontite + quartz) are likely precursors of higher-grade assemblages including spessartine, Mg-chlorite, braunite, viridine, and piemontite reported from greenschist-, amphibolite-, and high-grade blueschist-facies rocks of appropriate composition.  相似文献   

14.
A calculated petrogenetic grid for the system CaO-MgO-Al2O3-SiO2-CO2-H2O (CaMASCH), incorporating Tschermak's substitutions in amphibole, chlorite, talc and clinopyroxene, is used to examine phase relationships in aluminous marbles. A series of diagrams illustrating the effect upon stable mineral assemblages of increasing the aluminium content of a bulk composition is used to show the way aluminous minerals enter mineral assemblages in progressively more aluminous rocks. The effects of changing pressure and the incorporation of Fe into the bulk composition on the stable mineral assemblages are also examined. The calculated equilibria are shown to be in reasonable agreement with natural assemblages, and the incorporation of new experimental data on amphiboles into the existing dataset is shown to improve the agreement between observed and natural amphibole compositions.  相似文献   

15.
16.
Existing data on the temperature and composition dependence of the Fe2+-Mg2+ distribution between Fe-Mg olivine and orthopyroxene, the intra-crystalline distribution of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxene, and macroscopic activity-composition relations in olivine and orthopyroxene are shown to be inconsistent with generally accepted thermodynamic formulations which assume that the non-configurational Gibbs energy of orthopyroxene is independent of the degree of long-range ordering of Fe2+ and Mg+ between M1 and M2 sites. These data are interpreted in terms of the constraints they provide on the size of Bragg-Williams type energy, entropy, and volume terms for olivine and orthopyroxene. The apparent equilibrium constant for Fe-Mg exchange between olivine and orthopyroxene is shown to be a potentially useful ‘geothermometer’ for olivine-orthopyroxene assemblages with olivines with mole fraction of Fe2SiO4 component less than 0.2 or greater than 0.6. A provisional calibration of this ‘geothermometer’ is presented.  相似文献   

17.
Mn-rich members of the pyrosmalite-family [(Mn, Fe)8Si6O15(OH, Cl)10], friedelite and schallerite have been identified as rock-forming minerals together with caryopilite, in several metamorphosed carbonate Mn-deposits. The phase assemblages and mineral compositions are described for eight of these localities each of which represents a distinct geologic situation. Friedelite is always Cl-bearing and occurs both as a prograde phase in low-grade metamorphic rocks (Pyrenees, Haute-Maurienne) and as a secondary phase formed by retrogressive replacement of primary anhydrous phases in higher-grade rocks. Schallerite, an Asbearing relative of friedelite, occurs in the greenschist metamorphic deposit of the Ködnitztal (Austria) together with other As-minerals. In these deposits, caryopilite is typically formed during retrograde metamorphism by alteration of, generally anhydrous, Mn-silicates. Based upon these occurrences, a qualitative petrogenetic grid for the system MnO-SiO2-CO2-H2O with the phases friedelite, caryopilite, pyroxmangite/rhodonite, tephroite, rhodochrosite, quartz, CO2, and H2O is proposed. The phase relations imply that Cl- (or As-) free friedelite is not stable in hydrous systems with respect to caryopilite. From the mineral assemblages containing hydrous Mn silicates, waterrich fluids are inferred during the retrograde metamorphic evolution of the investigated deposits. Chemical data for Mn-rich chlorites, which are basically members of the clinochlore-pennantite series which coexist with the pyrosmalite minerals, show the absence of intermediate Mn/Mg ratios. This supports the existence of a miscibility gap as previously hypothesized by other authors.  相似文献   

18.
A mineralogical investigation of metamorphosed manganese rocks was carried out at ore deposits related to the Devonian volcanic complexes of the Magnitogorsk paleovolcanic belt of the South Urals. The mineralogical appearance of these rocks is determined by three consecutively formed groups of mineral assemblages: (1) assemblages occupying the main volume of orebodies and formed during low-grade regional metamorphism (T = 200−250°C, P = 2–3 kbar); (2) assemblages of segregated and metasomatic veinlets that fill the systems of late tectonic fractures; and (3) assemblages of near-surface supergene minerals. Sixty-one minerals have been identified in orebodies and crosscutting hydrothermal veinlets. The major minerals are quartz, hematite, hausmannite, braunite, tephroite, andradite, epidote, rhodonite, caryopilite, calcite, and rhodochrosite. The mineral assemblages of metamorphosed manganese rocks (metamanganolites) are characterized. Chemical compositions of braunite, epidote-group minerals, piemontite, pyroxenes, rhodonite, pyroxmangite, and winchite are considered. The bibliography on geology and mineralogy of the South Ural manganese deposits is given.  相似文献   

19.
The assemblages phengite-paragonite, phengite-margarite and phengite-paragonitemargarite are very common in metasediments of a N-S profile in the middle sector of the Hohe Tauern. The Si4+-content of phengite shows no regular change with increasing temperature from north to south along the profile. The variations in the d 002 basal spacings of phengite coexisting with paragonite are not only dependent on the Na+ content of phengite but also on the Mg2++Fe2+ content of the micas. Neither the sodium content in phengite nor the potassium content in paragonite shows any dependence on temperature. Chemical analyses of coexisting phengite, paragonite and margarite give the extent of the three-phase-region which is characterized by a small amount of margarite in paragonite (4 Mol%), by a large quantity of Na+ in margarite (28 Mol% paragonite), and limited miscibility between phengite and paragonite.  相似文献   

20.
Garnet-bearing mineral assemblages are commonly observed in pelitic schists regionally metamorphosed to upper greenschist and amphibolite facies conditions. Modelling of thermodynamic data for minerals in the system Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O, however, predicts that garnet should be observed only in rocks of a narrow range of very high Fe/Mg bulk compositions. Traditionally, the nearly ubiquitous presence of garnet in medium- to high-grade pelitic schists is attributed qualitatively to the stabilizing effect of MnO, based on the observed strong partitioning of MnO into garnet relative to other minerals. In order to quantify the dependence of garnet stability on whole-rock MnO content, we have calculated mineral stabilities for pelitic rocks in the system MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O for a moderate range of MnO contents from a set of non-linear equations that specify mass balance and chemical equilibrium among minerals and fluid. The model pelitic system includes quartz, muscovite. albite, pyrophyllite, chlorite, chloritoid, biotite, garnet, staurolite, cordierite, andalusite, kyanite. sillimanite, K-feldspar and H2O fluid. In the MnO-free system, garnet is restricted to high Fe/Mg bulk compositions, and commonly observed mineral assemblages such as garnet–chlorite and garnet–kyanite are not predicted at any pressure and temperature. In bulk compositions with XMn= Mn/(Fe + Mg + Mn) > 0.01, however, the predicted garnet-bearing mineral assemblages are the same as the sequence of prograde mineral assemblages typically observed in regional metamorphic terranes. Temperatures predicted for the first appearance of garnet in model pelitic schist are also strongly dependent on whole-rock MnO content. The small MnO contents of normal pelitic schists (XMn= 0.01–0.04) are both sufficient and necessary to account for the observed stability of garnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号