首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The distribution of streamwater within ice‐covered lakes influences sub‐ice currents, biological activity and shoreline morphology. Perennially ice‐covered lakes in the McMurdo Dry Valleys, Antarctica, provide an excellent natural laboratory to study hydrologic–limnologic interactions under ice cover. For a 2 h period on 17 December 2012, we injected a lithium chloride tracer into Andersen Creek, a pro‐glacial stream flowing into Lake Hoare. Over 4 h, we collected 182 water samples from five stream sites and 15 ice boreholes. Geochemical data showed that interflow travelled West of the stream mouth along the shoreline and did not flow towards the lake interior. The chemistry of water from Andersen Creek was similar to the chemistry of water below shoreline ice. Additional evidence for Westward flow included the morphology of channels on the ice surface, the orientation of ripple marks in lake sediments at the stream mouth and equivalent temperatures between Andersen Creek and water below shoreline ice. Streamwater deflected to the right of the mouth of the stream, in the opposite direction predicted by the Coriolis force. Deflection of interflow was probably caused by the diurnal addition of glacial runoff and stream discharge to the Eastern edge of the lake, which created a strong pressure gradient sloping to the West. This flow directed stream momentum away from the lake interior, minimizing the impact of stream momentum on sub‐ice currents. It also transported dissolved nutrients and suspended sediments to the shoreline region instead of the lake interior, potentially affecting biological productivity and bedform development. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
 Volcanic lakes have a wide range of characteristics, and we make an attempt to delineate the limiting physical conditions for several lake classes. The ratio between heat input and heat dissipation capacity of a lake constrains the temperature for perfectly mixed steady-state volcanic lakes. Poorly mixed lakes are also conditioned by this ratio, but their temperature structure is also strongly influenced by the hydrodynamics resulting from different mechanisms of heat transfer. The steady-state temperatures of volcanic lakes are largely determined by the magnitude of the volcanic heat influx relative to the surface area of the lake. Small lakes have only a small capacity for heat dissipation and their temperature rises quickly with only small heat inputs; large lakes are buffered against variations in heat input. Both the heat dissipation and meteoric water input into a lake are functions of lake surface area and therefore each lake water temperature demands a certain precipitation rate for mass conservation, independent of lake size. The results of energy/mass-balance modeling shows that under common atmospheric conditions, most steady-state volcanic lakes are unlikely to maintain a temperature in excess of 45–50  °C. Validation of the volcanic lake model was performed using published data from Yugama Lake (Japan) and the Keli Mutu lakes (Indonesia). Also, the model was applied to 24 natural systems to provide a baseline assessment of energy fluxes under the model assumptions so future work on those systems can identify nuances in individual systems that deviate from the simple model conditions. We recommend the model for use in assessing temperature variations and volcanic lake stability in settings with known physical and atmospheric conditions. Application of the energy/mass balance calculations of model lakes provides a genetic classification scheme largely based on physical process parameters. Received: 28 February 1996 / Accepted: 23 November 1996  相似文献   

3.
Summary During the thermocline tilt, observed in November 1947 in Lake Zürich, a difference in level of 16 m was found between the highest point (Quaibrücke) and the equivalent lowest point (middle of the Lake St?fa-Ufenau). The “fulcrum” line of this tilt was found somewhat N. of the deepest point and probably ran somewhat diagonally across the lake (e. g. Herrliberg-Rüschlikon) as a result of the angle between the W. wind and the longitudinal axis of the lake. Westerly storms, lasting for four days, transported enormous masses of warm, oxygen- and plankton-rich surface water up the lake; while hypolimnion water streamed down the lake in depths of 20 to 60 m. Attention is drawn to the physical and biological effects and to the frequency of these wind-induced drifts, which certainly should receive more attention in Swiss lakes.   相似文献   

4.
持久性有机污染物(POPs)在环境中分布广泛且持久存在并具有高生物富集性,通常具有致癌、致畸、致突变等危害.湖泊是POPs的主要环境归宿之一,湖泊中的POPs可被水生生物富集并通过食物网传递,对生态系统及人体健康构成极大的危害.中国是POPs生产及使用大国,也是世界上湖泊较多的国家之一.湖泊生物尤其是水产品是中国人饮食中的重要组成部分,因此POPs在中国湖泊生物体中的富集对当地的生态系统和人体健康存在很大的潜在危害.本文通过收集、分析1997年—2017年7月公开发表的中国湖泊生物体POPs数据,发现中国湖泊生物中POPs富集研究主要集中在东部平原湖区,青藏高原及云贵高原湖区有少量研究;不同POPs在不同湖区湖泊生物中富集的含量存在较大差异,DDTs和HCHs在各湖区生物中普遍检出且存在明显差异,东部平原湖区生物体内多氯联苯、多溴联苯醚含量高于其他湖区生物体内含量,其他POPs在湖泊生物体内的富集研究相对较少且主要集中在东部湖泊.中国湖泊生物中DDTs、HCHs、多环芳烃、多氯联苯、多溴联苯醚、多氯苯并二英和多氯苯并呋喃、全氟化合物、全氟辛酸、有机锡及六溴环十二烷脂肪归一化后的平均含量分别为454.56±653.40、153.57±435.99、2849.49±3092.52、118.40±20.28、18.40±20.28、17.43±19.43、147.17±192.93、1542.18±1347.64、11380.75±5316.75和2.19±1.92 ng/g.POPs在中国湖泊生物体内的含量水平与生物所处营养级、脂肪含量和年龄呈正相关,但并非完全一致,还受到生活习性、生物物种与结构、生存环境及生物量等多种因素的影响;生物不同组织对POPs的富集能力有较大差异,内脏器官对POPs的富集能力明显高于肌肉组织.  相似文献   

5.
Studyonthepatternandmodeofverticalcrustaldeformationduringtheseismogenicprocessofintraplatestrongearthquakes杨国华,桂昆长,巩曰沐,杨春花,韩...  相似文献   

6.
This study quantifies and ranks variables of significance to predict mean values of Secchi depth in small glacial lakes. The work is based on a new, extensive set of data from 88 Swedish lakes and their catchments. Several empirical models based on catchment and lake morphometric parameters are presented. These empirical models can only be used to predict Secchi depth for lakes of the same type, and the models based on geological map parameters can evidently not be used for time-dependent and site typical predictions of Secchi depth. However, many of the principles behind the results ought to be valid for lakes in general. Various hypotheses concerning the factors regulating the variability in mean Secchi depth among lakes are formulated and tested. The most important variables are: Lake colour (expressing allogenic input of different types of humic materials), total-P and lake temperature (measures of production of autogenic materials). The most important map parameters are: The mean depth (linked to resuspension and lake morphometry) and the ratio between the drainage area and lake area (expressing the linkage between catchment and lake). The predictability of some of the models cannot be markedly improved by accounting for the distribution of the characteristics in the drainage area (using the drainage area zonation technique). The variability in mean Secchi depth from other factors, such as precipitation and anthropogenic load, may then be quantitatively differentiated from the impact of these geological factors, which can statistically explain 68% of the variability in Secchi depth among these lakes. The model based on map parameters can also be used to estimate natural, preindustrial reference values of Secchi depth.  相似文献   

7.
Using ground temperature data from meteorological stations as well as earthquake, ground tilt and precipitation data, the spatial-temporal distribution of “Underground Hot Vortex” (UHV) in China was analyzed in detail. The results show that concerning an “Underground Hot Vortex” cell, its life-span is 3–8 seasons, 1.5 years on average; the mean horizontal scale is 600 km and its characteristic velocity is about 400 km/a; UHV is likely to appear in some areas where the crustal movement is intense and the absolute value of vertical deformation rate is relatively high; its activity could hardly be detected in the area where the crust is stable and the vertical deformation is weak; most of “Underground Hot Vortex Groups” originate from the edge of Indian Plate, then migrate eastwards with a leaping-frog style. 5–10 years are needed for their arrival in the eastern border of China. Their horizontal migrating velocity is 200–500 km/a which is nearly equal to the characteristic velocity of a single UHV. Project sponsored by the National Climbing Project and Key Project of the Chinese Academy of Sciences.  相似文献   

8.
Perturbations of the lake water balance, inputs of heavy metals to lakes, and intensifying fertilization of lakes through input and accumulation of phosphorus—these three classes of phenomena are among the more important background processes in lake restoration. Lake restoration consists of a series of measures animed at producing a homeostatic response of a lake system to external perturbations. The success of its implementation is affected by the morphometric and edaphic parameters of different types of lakes. The relationship between the volume (V) and mean-depth of fresh-water lakes indicates a trend of . Glacial lakes occuring on or near crystalline shields have relatively shallow depths, whereas volcanic lakes, rift valley and deep valley lakes have relatively greater depths for the same volume. For saline lakes (21 lakes, V>1 km3) that undergo cycles of expansion and shrinkage, the V to relationship is closer to power 1. Water residence times (τ) of small and big fresh-water lakes show a trend of τ approximately linear in or τ∝V0.3. Volcanic lakes and Maare have longer residence times in comparison to other lakes of similar volumes. For the major inorganic chemical species and heavy metals, the regulatory upper-limit concentrations in drinking water in the USA and EEC are from several times to more than 100 times higher than their concentrations in a global mean river water. Only three elements (Fe, P, and Al) occur in river water at concentrations approaching such upper-limit recommendations. Rates of accumulation of phosphorus in lake water and sediments, computed as the difference between input and ouflow removal rates for 23 fresh-water lakes, are generally lower for lakes of longer water residence time. The rate of accumulation is a measure of homeostatic response of the lake system to input load: it is equivalent to the rate of all the removal processes needed to maintain phosphorus concentration in lake water at a steady state.  相似文献   

9.
全球变化下青藏高原湖泊在地表水循环中的作用   总被引:2,自引:2,他引:0  
青藏高原是地球上最重要的高海拔地区之一,对全球变化具有敏感响应.青藏高原作为"亚洲水塔",其地表水资源及其变化对高原本身及周边地区的经济社会发展具有重要的影响.然而,在气候变暖的情况下,构成高原地表水资源的各个组分,如冰川、湖泊、河流、降水等水体的相变及其转化却鲜为人知.湖泊是青藏高原地表水体相变和水循环的关键环节.湖泊面积、水位和水量对西风和印度季风的降水变化非常敏感,但湖泊面积和水量变化在不同区域和时段的响应也不尽相同.湖泊水温对气候变暖具有明显响应,湖泊水温和水下温跃层深度的变化能够对水—气的热量交换具有明显影响,从而影响了区域蒸发和降水等水循环过程.由于湖泊水量增加,高原中部色林错地区湖泊盐度自1970s以来普遍下降.根据60多个湖泊实地监测建立的遥感反演模型研究发现,2000—2019年湖泊透明度普遍升高.对不同补给类型的大湖水量平衡监测发现,影响湖泊变化的气象和水文要素具有较大差异.在目前的暖湿气候条件下,青藏高原的湖泊将会持续扩张.为了深入认识湖泊变化在青藏高原区域水循环和气候变化中的作用,需要全面了解湖泊水量赋存及连续的时间序列变化,需要深入了解湖泊理化参数变化及对湖泊大气之间热量交换的影响,需要更多来自大湖流域的综合连续观测数据.  相似文献   

10.
Lake metabolism scales with lake morphometry and catchment conditions   总被引:1,自引:0,他引:1  
We used a comparative data set for 25 lakes in Denmark sampled during summer to explore the influence of lake morphometry, catchment conditions, light availability and nutrient input on lake metabolism. We found that (1) gross primary production (GPP) and community respiration (R) decline with lake area, water depth and drainage ratio, and increase with algal biomass (Chl), dissolved organic carbon (DOC) and total phosphorus (TP); (2) all lakes, especially small with less incident light, and forest lakes with high DOC, have negative net ecosystem production (NEP < 0); (3) daily variability of GPP decreases with lake area and water depth as a consequence of lower input of nutrients and organic matter per unit water volume; (4) the influence of benthic processes on free water metabolic measures declines with increasing lake size; and (5) with increasing lake size, lake metabolism decreases significantly per unit water volume, while depth integrated areal rates remain more constant due to a combination of increased light and nutrient limitation. Overall, these meta-parameters have as many significant but usually weaker relationships to whole-lake and benthic metabolism as have TP, Chl and DOC that are directly linked to photosynthesis and respiration. Combining water depth and Chl to predict GPP, and water depth and DOC to predict R, lead to stronger multiple regression models accounting for 57–63% of the variability of metabolism among the 25 lakes. It is therefore important to consider differences in lake morphometry and catchment conditions when comparing metabolic responses of lakes to human impacts.  相似文献   

11.
In 2007/08, a study was undertaken on the sediment dynamics in shallow Lake Markermeer (the Netherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern, indicating wind-induced sediment transport. Highly significant correlations were found between all sediment parameters. Lake Markermeer sediment dynamics were investigated in a sediment trap field survey at two permanent stations in the lake. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with average wind speeds, though periods of extreme winds also played a role. Sediment resuspension rates for Lake Markermeer were high, viz. on average ca. 1,000 g m−2 day−1. The highly dynamic nature of Lake Markermeer sediments must be due to the overall shallowness of the lake, together with its large surface area (dynamic ratio = [√(area)]/[average depth] = 7.5); wind-induced waves and currents will impact most of the lake’s sediment bed. Indeed, near-bed currents can easily reach values >10 cm/s. Measurements of the thickness of the settled “mud” layer, as well as 137Cs dating, showed that long-term deposition only takes place in the deeper SE area of the lake. Finally, lake sediment dynamics were investigated in preliminary laboratory experiments in a small “micro-flume”, applying increasing water currents onto five Lake Markermeer sediments. Sediment resuspension started off at 0.5–0.7 cm/s and showed a strongly exponential behaviour with respect to these currents.  相似文献   

12.
Variation of snow water resources in northwestern China, 1951–1997   总被引:19,自引:0,他引:19  
Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the “altitude model”, a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the “frost number model”, a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the “altitude model” can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the “altitude model” is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20–50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91°C on the plateau, the decrease in the area of permafrost will exceed 58%—almost all the permafrost in the southern plateau and in the eastern plateau will disappear. Project “Fundamental Research of Cryosphere” supported by the Chinese Academy of Sciences.  相似文献   

13.
Case histories of water level subsidence in bore-holes as a precursor of earthquakes are given here. Based on the examples, a testable quantitative theory for causative mechanism of the precursor—“draining-injecting water model with variable discharge” is proposed (abbreviated to DIW model). Through analysing the constitution law of which the deformation changes in the porous, water-saturated media under the effect of exterior stress, as first step of all, the authors suggested first a simple “drainage-natural restoration model” (abbreviated to DNR model), calculated and gave a group of theoretical precursor curve by using DNR model, compared the theoretical precursor curves of DNR model with the observational curves, found out the differences of the two curves, studied the causative physical factors that caused the differences then, revised the DNR model, and finally, the theory on “draining-injecting water model with variable discharge” in the paper was obtained. The authors deduced general equation of the two dimensions “draining-injecting water linear source drawdown field” in the paper, suggested and developed the concept on “domain”. DIW model can also give a possible explanation for both regularity and complexity of this precursor. DIW theory can quantitatively divide the seismogenic process of the foci on the short-term and impending process into several phases, and by inversing the discharge functionq(τ) curve, the time values by which the phases are divided were obtained. They will be helpful to predicting the occurrence time of earthquake and judging the DD and IPE model of the seismogenesis. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 194–201, 1993.  相似文献   

14.
梁新歌  王涵  赵爽  宋春桥 《湖泊科学》2023,35(6):2111-2122
在全球气候变暖和极端气候事件增加的背景下,流域水文循环过程受到的影响越来越强烈,导致湖泊水位变化表现出复杂的时空特征。而泛北极地区是地球上湖泊数量与面积分布最为集中的区域之一,该地区湖泊对气候变化响应非常敏感。因此,了解这些湖泊近期水文变化特征十分必要。本研究共搜集了36个泛北极大型湖泊(>500 km2)基于遥感或站点观测的近20年水位数据,分析其时空变化特征。本文使用线性回归模型来估算湖泊水位的变化趋势,进而利用皮尔逊相关分析了其主要水文影响变量和大气环流机制,并运用Mann-Kendall突变检验法探讨了水位突变的原因。结果表明,泛北极湖泊的水位整体上呈现不同程度上升(平均速率为0.013 m/a),有23个(64%)湖泊的水位呈上升趋势;研究湖泊中有10个通过90%统计显著性检验。其中,水位上升速率最大的湖泊是位于哈萨克斯坦的腾吉兹湖,上升速率为0.078 m/a。泛北极湖泊水位的波动主要与径流有关,有19个(53%)湖泊的水位波动与径流的增加更为相关;相比而言,位于亚洲的极地湖泊水位的上升与流域蒸发的降低显著相关,尤其是库苏古尔湖。从区域大气环流影响来看,泛北极湖泊水位变化主要与厄尔尼诺-南方涛动有关,其次是北极涛动和北大西洋涛动。本研究有助于加深对泛北极湖泊近20年水位变化规律及气候影响特征的科学理解。  相似文献   

15.
Summary The Lac de Bret, formerly an “oligotrophic” lake, has by several artificial risings of its level become “eutrophic” with the drawbacks of that state during the summer stagnation. A plant of partial underwater aeration has improved the situation and has been described in this Review (11, 423 [1949]). The above study compares the zooplancton of this lake in the years 1902/03 when it was yet oligotrophic with its plancton in the year 1943 during the investigations in the lake become eutrophic and finally in the year 1951 when it had again grown sound after five seasons of estival acration.   相似文献   

16.
The results of biogeochemical and microbiological studies of three small lakes in southwestern Arkhangelsk province are presented. The lakes differ in their morphometric characteristics, thermal and oxygen regimes, and the extent of anthropogenic impact they experience. In the periods of summer and winter stratification, anaerobic water layers with higher phosphates, ammonium, and sulfide sulfur (hydrogen sulfide) are found to form in the bottom horizon of deep-water zones of the lakes. The highest concentrations of sulfide sulfur (150–210 μg dm−3) were recorded in the shallow Beloe Lake during winter low-water period, while in summer, sulfide concentration did not differ from those obtained in other lakes (∼10 μg dm−3). The abundance of sulfate-reducing bacteria in lake bottom sediments varied from 10 to 100000 cell cm−3, and the rate of sulfate reduction process varied from 29 to 3746 μg S dm−3 day−1. Seasonal variations were revealed in hydrogen sulfide distribution over the water column and in the rate of sulfate reduction process in the upper horizons of bottom sediments in the examined lakes.  相似文献   

17.
Gradient-based similarity in the atmospheric boundary layer   总被引:2,自引:0,他引:2  
The “flux-based” and “gradient-based” similarity in the stable boundary layer and also in the interfacial part of the convective boundary layer is discussed. The stable case is examined on the basis of data collected during the CASES-99 experiment. Its interfacial counterpart is considered in both the quasi-steady (mid-day) and non-steady states, utilizing the results of large-eddy simulations. In the stable regime, the “gradient-based” approach is not unique and can be based on various master length scales. Three local master length scales are considered: the local Monin-Obukhov scale, the buoyancy scale, and the Ellison scale. In the convective “quasi-steady” (mid-day) case, the “mixed layer” scaling is shown to be valid in the mixed layer and invalid in the interfacial layer. The temperature variance profile in non-steady conditions can be expressed in terms of the convective temperature scale in the mixed layer. The analogous prediction for velocity variances is not valid under non-steady conditions.  相似文献   

18.
In the work 2D and 3D fields of stresses of several scale levels close to the off of the main fault (vertical strike-slip fault) in conditions of compression are mathematically calculated and investigated. The solution is found for the elastic task for a 2D “horizontal” field; a 3D field of stresses is obtained by the imposition of a “vertical” unaxis compression. It is shown that the surroundings of the fault are subdivided into three (not two, as is usually considered) regions of types of predictable secondary fractures: “extension,” “strike-slip fault,” and “compression.” In regions close to the off of the main fault, three different microregions occur. The type of destruction in these microregions depends on the parameters of the outer load. Natural and model data of second order fractures that are compared with the calculated data are examined and generalized. The performed investigation is important for the determination of the genesis of secondary fractures, located close to the main fault. The calculated parageneses of secondary fractures may be used for the estimation of the stress tensor type of the regional field.  相似文献   

19.
Using the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: 1 The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; 2 The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; 3 Before the main rupture of the rock sample the obvious “tendency anomaly” and “short-term anomaly” were observed, and some of them could be likely considered as the “impending earthquake” anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically. This subject is supported by the key project during the 8-th “Five Year Plan” from the State Science and Technology Commission of China (85-04-04).  相似文献   

20.
Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot‐study area on the widest ice‐free coastal margin of the south‐western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号