首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Major and trace element compositions of the Paleoproterozoic metaterrigenous rocks (Neroi Group) formed in a large sedimentation basin in the southwestern Siberian Craton (Biryusa Block) were determined to reconstruct the protoliths of metasediments, degree of their recycling, and maturity of source rocks. Primary rocks from the lower part of the sequence (Alkhadyr Formation) are represented by both petrogenic (“first cycle”) and recycled sediments of the graywacke to siltstone and aluminous pelite series. Protoliths of the micaceous and carbonaceous schists from the upper part of the sequence (Tumanshet Formation) correspond to silty pelites and pelites. As the micaceous schists of the Alkhadyr Formation, these rocks have K2O/Al2O3 < 0.3 and elevated Th concentrations, indicating the contribution of recycling in the formation of the fine-grained rocks. Distribution of trace and rare earth elements (REE) in metaterrigenous rocks of the Neroi Group testifies to the predominance of felsic rocks in the source area, while the prominent Eu minimum indicates the presence of granitoids—the products of crustal melting. Rocks of the Alkhadyr Formation also show elevated contents of Cr, Co, Ni, Sc, and Fe, indicating the development of mafic rocks in the source area. Comparison of the trace element contents and their ratios in rocks of the Neroi Group with those in the Archean (3.5–2.5 Ga) and Paleoproterozoic (2.5–1.6 Ga) upper continental crust made it possible to establish that metasedimentary rocks of the Neroi Group were formed by the erosion of sufficiently mature (geochemically differentiated) protoliths, which are similar to the Paleoproterozic crust. Judging from the Sm-Nd isotope data, one of the components of source areas for the terrigenous rocks of the Neroi Group were Archean rocks similar to basement rocks of the Biryusa block with the Nd model ages within 2.8–2.6 Ga. The second component in the source area could be juvenile Paleoproterozoic crust (Nd model age ∼1.9 Ga), which was probably represented by the metavolcanic associations of grabens surrounding the Biryusa block. The minimum Nd model ages for metaterrigenous rocks of the Neroi Group define the lowermost sedimentation boundary at 1.9 Ga.  相似文献   

2.
The paper presents data on high-grade silicate–carbonate rocks (calciphyres) from the Irkut block (Sharyzhalgai uplift, southwestern Siberian craton). Their origin and age were determined from the rock characteristics, U–Pb dating, REE content, and Hf isotope composition of zircon. The calciphyres occur both as independent section fragments and as interbeds within Paleoproterozoic garnet-bearing and high-alumina (cordierite- and sillimanite-bearing) gneisses. They were produced by metamorphism of terrigenous-carbonate sediments. The terrigenous sediments range in maturity from arenites and wackes to argillaceous rocks; this is consistent with the reconstruction of the sedimentary protoliths of paragneisses, which are predominant in the metasedimentary rocks. The petrogeochemical features of the calciphyres, their LREE enrichment relative to “pure” carbonate rocks, and a distinct Eu anomaly were inherited from the terrigenous component of calc-silicate sediments. The Nd model age (2.4–2.7 Ga) of the calciphyres and the value THf(DM-2st) = 2.5–3.0 Ga for zircon from these rocks indicate that carbonate accumulation was accompanied by the supply of terrigenous material, which formed during the erosion of Archean and Paleoproterozoic crust. Zircon from the calciphyres is similar to metamorphic zircon in REE patterns and Th/U ratios. It might have been of detrital origin and then recrystallized during high-temperature metamorphism. Terrigenous-silicate rocks were metamorphosed at ca. 1.87 Ga. This is close to the previous age estimates for the terrigenous rocks metamorphism (1.85–1.86 Ga) and the age of baddeleyite from apocarbonate metasomatic rocks (1.86 Ga).  相似文献   

3.
This paper presents mineral reactions in metapelites and estimations of PT-conditions of metamorphism for paragranulites of the Irkut block of the Sharyzhalgay uplift (Siberian Platform). The geothermometeric data based on exchange reactions, the contents of Na in cordierite and Ti in zircon indicate that the peak temperature of metamorphism reached ca. 800 °C at 6–7 kbar. The observed mineral reactions suggest that the pressure decreased to ca. 3 kbar at a retrograde stage of metamorphism.  相似文献   

4.
5.
We study migmatized aluminous gneisses in the northwest of the Irkut granulite complex in the southeastern Sharyzhalgai uplift of the Siberian Platform basement. Migmatized gneisses with the mineral assemblage Grt + Sil + Bt + Kfs + Pl + Qz (+ Crd + Opx + Spl) contain a leucosome and widespread cordierite-bearing (+ orthopyroxene, quartz, and spinel) symplectites developed after garnet and sillimanite. Study of the microstructural relationships of minerals and modeling using the PERPLEX 672 software have shown a retrograde P-T path of metamorphism for the metasedimentary gneisses, close to the isothermal decompression (ITD). The parameters of the peak of metamorphism are T = 850-870 °C and P > 7 kbar. The weighted average age of zircon from the metasedimentary gneisses (1856 ± 13 Ma, SHRIMP) corresponds to the time of metamorphism. The decompression type of retrograde metamorphism of the rocks in the northwest of the Irkut block indicates their formation in the crust extension and thinning setting. The presence of domal structures in the section of the Irkut block on the shore of Lake Baikal suggests that the dome tectogenesis was involved in the exhumation processes. The Paleoproterozoic metamorphism and granite formation were associated with the same stage of collision processes, when the compression setting was changed by an extension one (1.88-1.85 Ga).  相似文献   

6.
Abstract: Sensitive, high-resolution ion microprobe zircon U–Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet–biotite, hypersthene–biotite, and cordierite-bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4–3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show core-rim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: ≥2.7, ~2.3, and 1.95–2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.  相似文献   

7.
Doklady Earth Sciences - The present paper presents new U–Pb and Sm–Nd age data obtained for granulites of the Cheremshanskaya Unit enclosing metamorphosed volcano-sedimentary sulfide...  相似文献   

8.
9.
10.
New geochronological (U-Pb, Pb-LS, Sm-Nd) studies were carried out for minerals from metamorphic rocks (aluminous plagiogneisses with sillimanite (kinzigites) and potassium shadow migmatites) to establish the sequence of metamorphic events in the Irkut block of the Prisayan marginal uplift of the Siberian platform basement. Obtained data permit the distinguishing of two main stages of regional metamorphism under the granulite and amphibolite facies conditions: 2480–2560 and 1860–1900 Ma. New age data in general are consistent with previously published zircon estimates of the Neoarchean and Paleoproterozoic ages of the granulite-facies metamorphism of the Irkut block. This gives grounds to consider the geochronological studies of garnet and monazite as promising tool for distinguishing age boundaries of metamorphic transformations in the areas of polycyclic evolution.  相似文献   

11.
We present results of geochemical and Sm-Nd isotope studies of high-grade metaterrigenous rocks of the Kitoi and northwestern Irkut terranes of the Sharyzhalgai uplift on the Siberian Platform in comparison with paragneisses of the southeastern Irkut terrane. The metasedimentary rocks of the first region are high-alumina garnet-sillimanite-cordierite-bearing paragneisses; their protoliths were mostly mudstones and pelitic mudstones by major-element composition. The low-alumina biotite gneisses of the Kitoi terrane formed, most likely, from magmatic protoliths similar in petrochemical features to intraplate volcanics. The major factor controlling the composition of the studied high-alumina paragneisses is precipitation of most of incompatible trace elements in the clay fraction of sediments, as evidenced from the positive correlation between trace-element and Al2O3 contents. The Cr and Ni contents, showing a positive correlation with MgO and no correlation with Al2O3, are an indicator of the contribution of the mafic-source material to the formation of high-alumina rocks. The contribution of a mafic source-derived material to the formation of terrigenous rocks increases in passing from Kitoi to northwestern Irkut terrane. The high-alumina and garnet-biotite paragneisses of the southeastern Irkut terrane are similar in trace-element patterns to the analogous rocks of the Kitoi terrane and northwestern part of the Irkut terrane but show higher Th contents and a distinct negative Eu anomaly related to the change in the composition of the felsic source. The participation of felsic potassic igneous rocks in the formation of the southeastern terrigenous sediments is consistent with their deposition after the Neoarchean collision processes (metamorphism and granite magmatism), whereas sedimentation in the Kitoi and northwestern Irkut terranes preceded them. The Sm-Nd isotope characteristics indicate that the latter sediments formed mostly as a result of the erosion of the Paleo-Mesoarchean crust, whereas the metasediments of the southeastern Irkut terrane formed with the participation of Paleoproterozoic juvenile rocks. Thus, the variations in the trace-element and isotope compositions of the high-grade metamorphosed terrigenous rocks reflect recycling and growth of the continental crust of the Sharyzhalgai uplift during the Neoarchean-Pa- leoproterozoic transition.  相似文献   

12.
Geochronological data obtained in this work and previously known results of U-Pb geochronology suggest that principal metamorphic events, which took place in eastern part of the Irkut block (the Sharyzhalgai marginal ledge of the Siberian platform basement), correspond in age to (1) about 2.8 Ga, (2) 2649 ± 6 to 2562 ± 20 Ma, and (3) 1865 ± 4 to 1855 ± 5 Ma. Structural and metamorphic reworking of the earliest event originated under conditions of the granulite facies, whereas conditions of granulite and amphibolite facies were characteristic of the second and third events. Metasomatites after carbonate rocks originated in eastern part of the Sharyzhalgai ledge during the Early Proterozoic metamorphic event that lasted approximately 20 m.y. Being combined with age data, which are known at present for the reference syn-and post-collision granitoids in the Siberian platform basement and flanking foldbelts, new geochronological results show that accretion of basement blocks to the Siberian craton progressed from the east to the west between 1900 and 1840 Ma. To a first approximation, this geochronological interval characterizes time span of the Paleoproterozoic ocean closure and ultimate time, when the craton and supercontinent Columbia became amalgamated.  相似文献   

13.
14.
Detailed geochemical, isotope, and geochronological studies were carried out for the granitoids of the Chuya and Kutima complexes in the Baikal marginal salient of the Siberian craton basement. The obtained results indicate that the granitoids of both complexes are confined to the same tectonic structure (Akitkan fold belt) and are of similar absolute age. U–Pb zircon dating of the Kutima granites yielded an age of 2019±16 Ma, which nearly coincides with the age of 2020±12 Ma obtained earlier for the granitoids of the Chuya complex. Despite the close ages, the granitoids of these complexes differ considerably in geochemical characteristics. The granitoids of the Chuya complex correspond in composition to calcic and calc-alkalic peraluminous trondhjemites, and the granites of the Kutima complex, to calc-alkalic and alkali-calcic peraluminous granites. The granites of the Chuya complex are similar to rocks of the tonalite–trondhjemite–granodiorite (TTG) series and are close in CaO, Sr, and Ba contents to I-type granites. The granites of the Kutima complex are similar in contents of major oxides to oxidized A-type granites. Study of the Nd isotope composition of the Chuya and Kutima granitoids showed their close positive values of εNd(T) (+ 1.9 to + 3.5), which indicates that both rocks formed from sources with a short crustal history. Based on petrogeochemical data, it has been established that the Chuya granitoids might have been formed through the melting of a metabasitic source, whereas the Kutima granites, through the melting of a crustal source of quartz–feldspathic composition. Estimation of the PT-conditions of granitoid melt crystallization shows that the Chuya granitoids formed at 735–776 °C (zircon saturation temperature) and > 10 kbar and the Kutima granites, at 819–920 °C and > 10 kbar. It is assumed that the granitoids of both complexes formed in thickened continental crust within an accretionary orogen.  相似文献   

15.
The first results of the paleomagnetic study of one of the key Paleoproterozoic objects of the Aldan-Stanovoy Shield (the Ulkan trough) in the Bilyakchan-Ulkan volcanoplutonic belt are presented. The volcanosedimentary rocks of the Elgetei Formation and the granites of the Ulkan Complex were studied. According to these data and their comparison with the apparent Paleoproterozoic polar wandering path in the Angara-Anabar province, the Ulkan trough was (1) located during the timing of the studied rocks at 18°–26° S and (2) subjected to rotation (relative to the Angara-Anabar block) at 70° ± 8° in the time interval of 1732–1720 Ma ago. Based on the combined interpretation of the paleomagnetic, geochronological, and geochemical data published previously, a paleogeodynamic model is proposed. According to this model, the Aldan-Stanovoy and Angara-Anabar provinces of the Siberian Craton became a single rigid block about 1720 Ma ago.  相似文献   

16.
Geological observations and petrological and geochemical criteria are used to detect hybrid rocks at the endocontact of a dolerite dike. The hybrid rocks were produced when the material of a mafic intrusion mixed with a felsic melt. The latter was produced by the melting of the metamorphic rocks making up the Goloustnaya basement inlier of the Siberian craton, under the thermal effect of the intruded dike. Two age groups of zircon have been identified in the hybrid rock by SHRIMP analysis. The Paleoproterozoic age of inherited zircon (1902, 1864, 1859, and 1855 Ma) reflects the contribution of ancient sources to the hybrid-rock composition. The young, primary-magmatic, zircon grains, produced by melting at the endocontact of the mafic intrusion (494 ± 5 Ma), are coeval with the hybrid rocks, and their age indicates when the mafic rocks intruded the metamorphic framework. Dikes of close age, with similar geochemical characteristics, are present on the vast southern margin of the Siberian craton—from Goloustnaya to Biryusa salients.  相似文献   

17.
Types and lateral and vertical distribution of silicification in Riphean (largely dolomitic) rocks of the Yurubcha-Tokhomo zone of the Siberian Craton are discussed. It is shown that quartz and pyroclastic material in sediments were subjected to intense dissolution in a highly alkaline Riphean basin with the release of silica. Rapid and abrupt decrease in alkalinity during hiatus and desiccation periods resulted in the precipitation of dissolved silica and silicification of near-surface sediments. Lateral distribution of silicification was controlled by the redistribution of silica during the pre-Vendian hiatus, when surface waters were filtered through a carbonate massif with the simultaneous karst formation and silica dissolution. In the water discharge area, secondary silica was precipitated owing to changes in pH values and other physicochemical conditions.  相似文献   

18.
The Paleoproterozoic Liaohe assemblage and associated Liaoji granitoids represent the youngest basement in the Eastern Block of the North China Craton. Various structural elements and metamorphic reaction relations indicate that the Liaohe assemblage has experienced three distinct deformational events (D1 to D3) and four episodes of metamorphism (M1 to M4). The earliest greenschist facies event (M1) is recognized in undeformed or weakly deformed domains wrapped by the S1 schistosity, suggesting that M1 occurred before D1. The D1 deformation produced small, mostly meter-scale, isoclinal and recumbent folds (F1), an associated penetrative axial planar schistosity (S1), a mineral stretching lineation (L1) and regional-scale ductile shear zones. Concurrent with D1 was M2 metamorphism, which occurred before D2 and produced low- to medium-pressure amphibolite facies assemblages. Regionally divergent motion senses reflected by the asymmetric F1 folds and other sense-of-shear indicators, together with the radial distribution of the L1 lineation surrounding the Liaoji granitoids, imply that D1 represents an extensional event. The D2 deformation produced open to tight F2 folds of varying scales, S2 axial crenulation cleavages and ENE-NE-striking thrust faults, involving broadly NW–SE compression. Following D2 was M3 metamorphism that led to the formation of sillimanite and cordierite in low-pressure type rocks and kyanite in medium-pressure rocks. The last deformational event (D3) formed NW-WNW-trending folds (F3), axial planar kink bands, spaced cleavages (S3), and strike–slip and thrust faults, which deflect the earlier D1 and D2 structures. D3 occurred at a shallow crustal level and was associated with, or followed by, a greenschist facies retrograde metamorphic event (M4).The Liaohe assemblage and associated Liaoji granitoids are considered to have formed in a Paleoproterozoic rift, the late spreading of which led to the occurrence of the early extensional deformation (D1) and the M1 and M2 metamorphism, and the final closing of which was associated with the D2 and D3 phases of deformation and M3 and M4 metamorphism.  相似文献   

19.
Isotopic compositions of carbon and oxygen in carbonates and sulfur in sulfates of the Verkhnyaya Lena Formation (ε2–ε3), which terminates the Cambrian section of the Irkutsk Amphitheater of the Siberian Craton, are studied. Sulfates of the Verkhnyaya Lena Formation are marked by unusually low δ34S values (4.6–12.0‰) relative to sulfates of the underlying Angara Formation. This is likely caused by variations in the facies-paleogeographic sedimentation at the transition of the Angara and Verkhnyaya Lena formations, as well as associated variations in the water and salt alimentation budget in sedimentation basins, due to their isolation from open sea and intensification of the continental and underground discharge. The δ18O(PDB) value in carbonates decreases from ?4.4‰ at bottom to ?10.4‰ at top, reflecting variation in postsedimentary transformations and probable continuous freshening of sedimentation basin. Isotopic composition of carbon in most samples shows normal marine δ13C values (0 ± 1‰). Only in some samples, does the δ13C value increase up to ?3.8 and 2.2‰ due to specific features of postsedimentary processes. The Rb-Sr systems of the clayey component of marls from the 500-m-thick section of the Angara Formation and bottom of the Verkhnyaya Lena Formation record an age of 512 ± 10 Ma, which is close to the assumed stratigraphic age of the Verkhnyaya Lena Formation. The 87Sr/86Sr initial ratio is 0.7082 ± 0.0004.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号