共查询到18条相似文献,搜索用时 62 毫秒
1.
最近30年来,北冰洋海冰和海水发生了急剧变化:海冰覆盖面积减少、冰层变薄、水温升高、淡水输入增加、污染加剧,正威胁着现有与海冰关系密切的生态系统。预期随着变化的持续,与海冰相关的食物链将在部分海域消失并被较低纬度的海洋物种所取代、总初级生产力有望增加并为人类带来更多的渔获量、而北极熊和海象等以海冰作为栖息和捕食场所的大型哺乳动物的生存前景堪忧。今后人类将更为重视对北冰洋生态环境变化规律的认识并加以运用、关注北冰洋特有物种的命运并加以力所能及的保护、评估北冰洋生态系统的变化对人类社会经济的影响以期及早采取应对措施。数据积累是目前制约北极研究的最大障碍,但随着 SEARCH 等大型国际研究计划的实施,对北冰洋生态系统的监测和研究将更为系统和全面。 相似文献
2.
采用美国冰雪数据中心(NSIDC)的日尺度与月尺度海冰密集度数据,将海冰密集度为15%作为阈值确定海冰外缘线位置,提取波弗特海海域的海冰外缘线,计算波弗特海的海冰密集度、海冰范围与海冰面积,然后通过海冰范围与海冰外缘线的年际变化与季节变化来分析波弗特海海冰外缘线退缩的时空变化特征与趋势。实验结果表明,1978—2015年波弗特海的海冰密集度、海冰范围与海冰面积整体变化趋势一致,减少趋势显著。37年来,海冰密集度平均每年减少约0.3%,海冰范围平均每年减少3 235 km2,海冰面积平均每年减少5 084 km2。海冰密集度在1979—1996年无明显减少趋势,1996—2015年减少趋势明显。波弗特海海冰范围一般在9月达到最小值,在11月至次年5月维持在最大值(全冰覆盖状态);海冰面积一般在9月达到最小值,在12月或者1月达到最大值。海冰范围最小值出现时间有延迟的趋势,全冰覆盖状态具有起始时间越来越晚、终止时间越来越早、持续时间越来越短的趋势,平均持续天数为212 d。 相似文献
3.
4.
本文利用中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,即MODIS)的海冰数据,监测中山站附近区域海冰的季节性(尤其是夏季)的消融与冻结情况及海冰表面温度的变化。文中先对MODIS的海冰数据进行影像分层、数据合成,分时间段计算海冰范围,然后提取海冰表面温度信息,最后对获取的数据进行分析。研究结果表明,中山站附近区域在每年10月至翌年2月中上旬为海冰消融期;2月中下旬至4月为海冰冻结非密封期;5月至9月为海冰冻结密封期。海冰范围2月份最小;海冰表面温度1月份最低,8月份最高。 相似文献
5.
6.
基于七景北极Radarsat-2 SAR图像以及中国第六次北极科学考察走航期间利用船侧录像观测获得的平整冰厚度数据,通过灰度共生矩阵计算纹理,确定了最适合反演海冰厚度的纹理参数。并分析了海冰厚度与纹理之间的相关关系,探讨了纹理反演海冰厚度的可能性。选取了最合适的纹理特征进行拟合,并利用所得经验方程进行反演验证,结果与实测数据吻合较好,平均相对误差13.7%。与传统的仅依靠后向散射系数反演海冰厚度进行对比,新方法的误差更小,证明了纹理特征反演冰厚的优势。 相似文献
7.
选取国家海洋卫星应用中心提供的海洋二号B星扫描辐射计数据采用NASA TEAM算法反演的海冰密集度产品(简称HY2数据集),中国海洋大学提供的风云三号D星微波成像仪采用DT-ASI算法得到的海冰密集度产品(简称OUC数据集),以及美国冰雪中心提供的海冰密集度产品(简称NSIDC数据集)三种数据源对北极海冰监测能力进行比较分析。通过与德国不莱梅大学发布的海冰密集度数据产品(简称BRM数据集)和MODIS数据提取的海冰信息的比较发现:在低纬度区域(≤70°N),HY2与BRM数据集最为接近;在中纬度区域(70°N—80°N),OUC与BRM数据集的数据吻合程度最高;在高纬度区域(80°N—87°N),NSIDC数据集与BRM数据集最接近。在北极东北航道区域, HY2数据集适用于通航窗口期第一和第四航段内的海冰监测; NSIDC数据集适用于东西伯利亚海域以及临近窗口期时段的海冰监测;而OUC数据集则适用于北极东北航道大部分航段的海冰监测需求。 相似文献
8.
海冰密集度产品在冰间湖的监测与研究中应用广泛。本文使用8种典型的被动微波遥感海冰密集度产品(NSIDC-BT-25km、NSIDC-NT2-25km、NSIDC-NT2-12.5km、NSIDC-NTBT-25km、EUMETSAT-BTBR-25km、EUMETSAT-BTBR-10km、UH-ASI-12.5km和UB-ASI-6.25km)以及5种常用的海冰密集度阈值(15%、40%、50%、60%和70%)对南极威德尔海2016—2017年出现的冰间湖进行监测,并使用形态学后处理操作对监测结果进行优化;在此基础上,对比不同阈值条件、海冰密集度反演算法以及空间分辨率差异对冰间湖面积和范围的影响,并进一步探究形态学操作对监测结果的影响。结果表明:NSIDC-NTBT-25km产品对阈值的敏感性最高,NASATeam2(NT2)算法反演的海冰密集度产品对阈值的敏感性最低,并且其监测的冰间湖面积和范围相较于Bootstrap(BT)和ARTIST Sea Ice(ASI)算法产品的监测结果整体偏小;高空间分辨率产品监测到的冰间湖开放时间更早,面积和范围更大,持续时间也更长;空间分辨率对... 相似文献
9.
海冰厚度作为海冰的重要变量之一,相较于海冰密集度、海冰漂移速度、海冰范围等,数据时空完整性仍然不足。当前获取北极海冰厚度的主要手段为卫星遥感,除之前的CryoSat-2、SMOS等卫星,2018年11月又新增了ICESat-2卫星。目前,针对北极多源卫星海冰厚度的时空变化差异性对比以及数据精度评估的工作较少,因此,本研究通过选取最近的完整两年(2019—2020年)内的ICESat-2、CryoSat-2以及CS2SMOS(CryoSat-2和SMOS融合产品)海冰厚度数据进行对比分析,量化其时空差异。结果显示,整体上CryoSat-2卫星数据的平均海冰厚度最大, ICESat-2其次, CS2SMOS最小。三种卫星数据间的差异具有明显的时空变化特征,在海冰厚度高值区ICESat-2数据的厚度最大, CryoSat-2与CS2SMOS数据的厚度相近,而在海冰边缘区CryoSat-2数据的厚度最大, CS2SMOS最小。从区域来看,不同卫星数据反演的海冰厚度在东西伯利亚海和波弗特海区域差异较小,在巴伦支海区域差异较大。在此基础上,利用研究时段内的“冰桥行动”实地观测数据对多源卫星数据进行... 相似文献
10.
北极是全球气候和环境变化的驱动器之一,获取北极海冰的时空特征和变化规律对研究北极以及全球气候变化意义重大。格陵兰海是北极海冰剧烈变化的区域之一,采用CryoSat-2的雷达测高数据,获取了格陵兰海的海冰干舷高分布,并利用波弗特环流计划(BGEP)仰视声呐(ULS)数据进行了验证。研究结果表明,格陵兰海海冰干舷高和分布范围存在明显的季节性变化特征,具体体现在格陵兰海海冰从10月份进入冻结期开始,海冰分布范围不断扩张,海冰干舷高也逐渐增大,2月份平均干舷高达到最大(0.2 m),之后格陵兰海海冰开始消融,覆盖范围不断内缩,9月海冰干舷高降至最小(0.13 m)。 相似文献
11.
本文用了 1 999年夏季中国首次北极科学考察队对海冰、大气和海洋进行的同步和准同步的综合立体观测所获取的资料 ,研究海冰在海 气相互作用中扮演的角色。发现海冰的种类、分布、冰厚等变化对海气热交换都有重要影响。在浮冰区海洋以潜热的形式向大气输送热量 ,潜热通量与浮冰密集度的大小密切有关 ,浮冰越少潜热通量越大 ,潜热通量约为2 1~ 2 3 .6W /m2 ,潜热通量大于感热通量 ;在冰盖和大浮冰块上 ,大气以感热的形式向冰雪面上输送热量。新生的浮冰区或冰间湖是海气热交换最激烈的地方 ,是气候最敏感的区域 ,是北冰洋蒸汽雾生成的重要条件。用层结大气整体动力学输送法 ,计算了一次大范围的蒸汽雾过程的海气热交换 ,海洋向大气输送的热量总功率约为 1 4 8亿千瓦 ,相当于中国发电能力的 69倍 ,相当于大西洋向北冰洋输送热量平均功率的 1 / 2 0。北冰洋的夏季能够形成各种类型的海雾 :辐射雾、蒸汽雾和平流雾 ,其重要原因就是因为海冰的存在 ,使下垫面的性质复杂化 ,海气交换复杂化。 相似文献
12.
本文利用前人的成果及笔者1992/1993年的南极海冰观测和收集的资料以及水文观测资料数据阐述了南极海冰的特性,特别是南极海冰过程、冰穴以及冰川冰对南极水团(南极表层水、南极底层水、南极陆架水、南极中层水以及南极冰架水)的形成和变性所起的特殊作用。 南极海冰覆盖面积的年际变化,夏季最大年份是最小年份的2倍多,冬季年间变化较小,最大仅为20%;但其季节变化非常大,冬季平均覆盖面积通常是夏季的5倍。南极海冰对大气-海洋间相互作用有重大影响,特别是深海洋区中冬季的结冰和发育造成的垂向对流、夏季的融化是形成南极表层水(含南极冬季水和南极夏季表层水),进而形成南极中层水的主要原因;南极陆架区的的海冰兴衰过程是形成南极陆架水的直接原因,它与变性南极绕极深层水混合并受到冰川冰的进一步冷却作用,成为形成南极底层水的主要水团;南极冰架底部的冷却、融化和冰架以下水体的结冰作用形成的高盐对流过程产生的南极冰架水,亦是形成南极底层水的贡献者。 冰穴是70年代以来卫星观测的重大发现。对其形成和对大气、海洋的影响作用尚不完全清楚,初步的研究成果表明,冰穴中产生的热盐对流对南极水团的形成、变性、大洋深层的翻转以及海洋-大气间的热量传输和气体交换起有非常重要的作用。 相似文献
13.
对1979—2009年月平均的CFSR(The Climate Forecast System Reanalysis)海冰密集度(SIC)和海平面气压(SLP)资料进行多变量经验正交函数分解(MV—EOF),得出耦合主模态,并通过对温度、位势高度和风场的回归分析,进一步探寻海冰与大气环流的关系,第一模态SLP的特征为北极涛动(AO),SIC呈离散的正负中心分布但大体为东西反位相,AO正位相时,喀拉海、拉普捷夫海、东西伯利亚海和鄂霍次克海海冰减少,巴芬湾、波弗特海、楚科奇海和白令海海冰增加。耦合第二模态的SLP呈偶极子分布,负、正异常中心在巴伦支海和波弗特海,SIC在巴伦支海,弗拉姆海峡,格陵兰海,拉布拉多海和白令海,鄂霍次克海地区有正异常,在喀拉海、拉普捷夫海、东西伯利亚海、楚科齐海和波弗特海为负异常。耦合第三模态SLP在冰岛地区存在负异常中心,在拉普捷夫海地区有正异常中心,SIC在巴伦支海北部、弗拉姆海峡、格陵兰海为负异常,其余地区全为正异常。
对SLP和SIC分别进行EOF分解,并与耦合模态进行比较,SLP的EOF主模态的时空分布与耦合模态中SLP的时空分布十分相似,SIC的EOF模态的时空分布则与耦合模态中SIC的时空分布有较大差别,说明耦合模态对SIC的分布影响较大,即大气环流对海冰分布的影响为主要的过程,海冰对大尺度的大气环流的模态的影响不明显。 相似文献
14.
本文将南极海冰分为4个区:SPI1(0°-120°E),东南极海冰;SPI2(120°E-120°W),以罗斯海为主体的海冰区;SPI3(120°W-0°),以威德尔海为主体的海冰区;SPI4,全南极海冰区。北极海冰区分为3个区:NPI1(90°E-180°-90°W),太平洋侧冰区;NPI2(90°W-0°-90°E),大西洋侧冰区;NPI3,全北极冰区。本文使用了WDC-A的SIGRID海冰资料,以分析南极和北极各冰区之间的相互关系。发现两极各冰区之间存在着非常复杂的相互作用。其中最突出的特征是:两极海冰之间相互作用的振源是NPI2。SPI3是影响南极海冰的正反馈中心。SPI2则是南北两极海冰的负反馈中心。NPI2,SPI3和SPI2之间的相互作用最强,形成涛动关系。这种涛动关系不是同时期的,而是有较长的滞后时间差。两极海冰形成周期变化,其周期为5-6年,正与NPI2和SPI3自身变化周期一致。另外还有更长的循环周期9-11年 相似文献
15.
16.
根据2003—2010年南极磷虾48.2区产量数据结合该区域海冰和SST数据,分析了磷虾产量的时空分布,探讨了海冰和SST对南极磷虾资源丰度的影响。结果表明,48.2区的渔汛期为3—7月,主要作业时间为2—8月,产量约占该渔区年产量的99.3%。回归分析表明,磷虾CPUE变动与海冰和SST面积变化关系明显。磷虾CPUE与海冰总面积年间变化呈现显著的负相关(R=0.80),与海冰密集度为90%—100%的海冰面积负相关系数最大(R=0.84);年内变化关系则为一元二次多项式回归模型,CPUE随海冰面积的递增先增大后减小,与海冰密集度为60%—70%的海冰面积相关系数最大(R=0.94)。磷虾CPUE与SST为-2—3℃时的总面积年间变化负相关性不显著(R=0.46),但与SST为1—2℃时的面积呈现显著的负相关(R=0.91);年内变化关系也为一元二次多项式回归模型,CPUE随SST面积的递增先增大后减小,与SST为0—1℃时的面积相关系数最大(R=0.97)。 相似文献
17.
利用1997-2005年美国国家冰雪中心提供的卫星遥感数据,对东西伯利亚海海冰周年变化特征及其动力和热力学机制进行详细分析,以1999年海冰状况为例讨论了该海域海冰的周年变化。按照海冰变化的区域特征和融化机制差异,将全年的海冰变化过程分为密集冰封期、陆坡开裂期、西部融化期、全面融化期和秋季结冰期。不同年份各个阶段发生的具体日期不尽相同,海冰覆盖面积最小值及其发生时间有所差异,但是,各年海冰变化的5个阶段都清晰可辨。海冰融化时间持续3个月,冻结时间仅为1个半月左右。每年5月份东西伯利亚海陆坡处海冰发生开裂,主要是该时期风场辐散的作用。1999年,除5月份以外的其他月份,东西伯利亚海海表面风场是辐聚风场,不利于海冰融化和开阔水域面积的扩大。东西伯利亚海海冰融化的决定性因素是陆地径流,因迪吉尔卡河、科雷马河、亚纳河和勒拿河四条河流在海冰融化过程中发挥主要作用。海冰覆盖面积最小值出现的时间一般是9月下旬,整个海域的沿岸带海冰全部消失,形成大范围的开阔水。夏季北半球气温的升高和太阳辐射的加热作用,为海冰融化提供持续的热量。 相似文献
18.
1992年3-5月极星号ANT/X3秋季航次,对南极威德尔海东北海域浮冰区形成期新冰生态结构进行考察研究。结果表明,海冰物理结构特征与海冰生成环境及其形成过程有很大关系。冰体结构以颗粒冰、柱状冰以及混合冰为主,以颗粒冰为主结构的海冰较多地聚集浮游生物细胞,消耗部分冰中营养盐,柱状冰较少聚集生物细胞,其营养盐波动较小。同时,新形成期海冰中,叶绿素含量普遍低于一年冰,而营养盐含量则较高,基本处于初始状态,由此表明,海冰中生命活动随海冰冰龄增加而不断增强。 相似文献