首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aims to understand evolution of the Lesser Himalaya, which consists of (meta) sedimentary and crystalline rocks. Field studies, microscopic and rock magnetic investigations have been carried out on the rocks near the South Almora Thrust (SAT) and the North Almora Thrust (NAT), which separates the Almora Crystalline Zone (ACZ) from the Lesser Himalayan sequences (LHS). The results show that along the South Almora Thrust, the deformation is persistent; however, near the NAT deformation pattern is complex and implies overprinting of original shear sense by a younger deformational event. We attribute this overprinting to late stage back-thrusting along NAT, active after the emplacement of ACZ. During this late stage back-thrusting, rocks of the ACZ and LHS were coupled. Back-thrusts originated below the Lesser Himalayan rocks, probably from the Main Boundary Thrust, and propagated across the sedimentary and crystalline rocks. This study provides new results from multiple investigations, and enhances our understanding of the evolution of the ACZ.  相似文献   

2.
Landslides are self-organizing and self-referenced systems. The conditions which lead to their emergence along Himalayan highways are not the same as those which govern their subsequent evolution. Landslides originate at sites which differ from average conditions by having significantly higher, steeper roadcuts, carved into steeper hillsides, with more finely bedded but less steeply dipping rocks, and fewer trees upslope. These variables do not correlate with measures of landslide size. Landslide morphometric variables correlate with other landslide variables and with few external factors. The system exhibits independence (autopoiesis) from its environment. Additionally, landslides dominated by rock-mechanical processes tend to produce lower angle outfalls from higher, north-facing, roadcuts than those dominated by soil-mechanical processes which are associated with greater depths of below-soil regolith. However, the outfall volumes produced by the landslides of different type are similar. These findings are generated from statistical (correlation/T-test/stepwise discriminant) analyses of data produced by a field survey of average environmental conditions, and the morphometry and environmental contexts of 88 landslides, on 7.6 km of the Almora Bypass.  相似文献   

3.
The chemical and petrological correlation of metamorphic nappes and klippes overlying the Proterozoic sedimentary units in the Kumaun Himalaya is still debated. The Ramgarh and Almora gneisses, not previously distinguished in the Askot Klippe, show distinct field, petrological and chemical signatures markedly similar to the tectonostratigraphic disposition of the Almora Nappe. A negative Eu anomaly in the Ramgarh granitic gneisses indicates lesser plagioclase fractionation while the Eu anomaly in the Almora pelitic gneisses is likely to have been controlled by feldspar crystallization in restites. During the anatexis at 776°C temperature and 6.6 kbar pressure, the melt moved slightly away to its crystallization sites. The Rb/Sr ratio ?0.54 and Nb ?10 ppm is consistent with the granodioritic composition. The negative Sr anomaly in the underlying Ramgarh granitic gneisses indicates a distinct mantle derived source/plagioclase fractionation with a notable correspondence to other late orogenic granites, particularly the basement Ulleri gneisses from the Nepal Himalaya. Ramgarh gneisses plot in the late-and post-COLG field. The Askot ensemble is likely to be the tectonometamorphically reworked basement, viz. the Ramgarh Group along with its metapelitic cover o f the Almora Group, together comprising southward thrust remnants of the leading edge of the Indian Plate that collided with Tibet during the Tertiary Himalayan orogeny.  相似文献   

4.
The folds generally initiate at several discrete points along a layer or multilayer undergoing compressional forces. These compressional forces often lead to rotation of fold segments and in all such regimes, folds are strongly asymmetrical and are in complete agreement with the direction in which the force is applied and also with the related thrust sheet movement. This paper illustrates the progressive change in fold geometry with increasing compression and ductile shearing using natural example as studied in the Almora Crystalline Zone (ACZ).  相似文献   

5.
A study of the water and sediment chemistry of the Nainital, Bhimtal, Naukuchiyatal and Sattal Lakes of Kumaun, has shown that the water of these lakes are alkaline and that electrical conductivity, total dissolved solid and bicarbonate HCO 3 are much higher in Nainital than in the other three lakes. The weathering of limestone lithology and anthropogenic pollution, the latter due to the very high density of population in the Nainital valley, are the primary sources of enhanced parameters. The low pH of Nainital Lake water is due to low photosynthesis and enhanced respiration, increasing CO2 in the water and the consequent enhancement of Ca2+ and HCO 3 . The dissolved oxygen in Nainital Lake is less compared to other lakes, indicating anoxic conditions developing at the mud–water interface at depth. The PO 4 3− content in Nainital is higher (124 μg/l), showing an increasing trend over time leading to eutrophic conditions. The trace metals (Cu, Co, Zn, Ni, Mn, and Sr) are present in greater amounts in the water of Nainital Lake than in the other three lakes, though Fe and Cr are high in Bhimtal and Fe in Naukuchiyatal. The higher abundance is derived from the leaching of Fe–Mg from metavolcanic and metabasic rocks. Most of the heavy metals (Cr, Ni, Cu, Mn, Fe, Sr, and Zn) significantly enrich the suspended sediments of the lakes compared to the bed sediments which due to their adsorption on finer particles and owing to multiple hydroxide coating and organic content, except for Fe, which is enriched in the bed sediments. The high rate of sedimentation, 11.5 mm/year in Nainital, compared to Bhimtal with 4.70 mm/year, Naukuchiyatal with 3.72 mm/year, and Sattal with 2.99 mm/year, has resulted in shorter residence time, poor sorting of grains, and lesser adsorption of heavy metals, leading consequently, their depletion in the bed sediments of Nainital Lake.  相似文献   

6.
The Proterozoic Nagthat Formation of the Krol-belt succession, in the Nainital area, is composed mainly of fine- to coarse-grained quartzarenite with a subordinate amount of purple to grey sandstone, siltstone-shale and conglomerate horizons. The association with spilitic lava flows, variable palaeocurrent trends and the restricted lateral extent of the Nagthat Formation within the Krol-belt succession imply an active role for tectonism in the basin of deposition. In the upward coarsening succession of the Nagthat Formation, six major lithofacies have been identified: medium- to coarse-grained gravelly quartzarenite (Lithofacies A), planar cross-bedded, medium-grained quartzarenite (Lithofacies B), horizontally laminated, fine-grained quartzarenite (Lithofacies D), interbedded sandstone-shale (Lithofacies E) and matrix-supported conglomerate (Lithofacies F). The constituent lithofacies are repetitive in nature, forming upward fining unit cycles and interpreted to reflect deposition as upper shore-face, shoals and bars, barrier-beachface, tidal channels (inlets), intertidal–sandflat–mixedflat environments and, occasionally, in the form of gravity flows in subtidal channels. The general upward coarsening succession of the Nagthat Formation represents deposition in a progradational (regressive) barrier island system. The palaeocurrent pattern in the Nagthat Formation is distinctly polymodal and indicates sediment distribution across the roughly NW–SE trending shoreline, in response to a dominating flood tidal current system. The palaeocurrent pattern shows higher variability in the upper shore-face deposits than in the tidalflat domain. A recycled metasedimentary terrain served as the source for the Nagthat Formation, probably supplying the sediments from E, NE and S directions.  相似文献   

7.
Joshi  L. M.  Kotlia  B. S.  Kothyari  G. Ch.  Singh  A. K.  K. Taloor  A.  Upadhyay  R.  Dayal  D. 《Geotectonics》2021,55(4):543-562
Geotectonics - The present study focuses on the neotectonics activity and related mass movement along the Eastern Ramganga River Basin (ERRB), Kumaun Himalaya, India. To understand the...  相似文献   

8.
Normal faults on mesoscopic scale are observed in the Panjal Thrust Zone in the Dalhousie area of western Htmachal. The boundary between the southern margin of the Higher Himalaya Crystalline (HHC) of Zanskar and the Chamba syncline sequence is also described as a normal fault, referred to as Bhadarwah Normal Fault in the Bhadarwah area of Doda district on the basis of field mapping and shear sense criteria using S-C fabric and porphyroblast rotation. The occurrence of these normal faults suggests that the extensional tectonic regime was not restricted only to the Zanskar shear zone area but that it also occurs south of the Higher Himalayan range. This suggests NE-directed subhorizontal extension and exhumation of deeper level rocks of Higher Himalaya Crystallines.  相似文献   

9.
10.
The picturesque Nainital Lake, in the Uttarakhand state of India, is one of the major tourist attractions in the northern part of India. The increasing tourism and population around these lakes are a major concern for the ecology and good sustenance of the lakes. The present study is aimed to understand the behaviour of nutrients and metals in the sediment and their association with chemical forms in the lake. The study was accomplished by studying the water, interstitial water and sediments for major oxides, nutrients and metals in the lake. The different chemical forms of phosphorus and metals in the sediments were done using sequential extraction procedures. The water chemistry (Ca + Mg:Na + K) and the sediment chemistry (CIA and Al2O3/K2O) show that the rocks in the catchment area play an important role in the geochemistry of the lake. The metals in the water also show that the Tallital basin is more polluted than the Mallital basin, may be due to the influence of Bus station. The high concentration of chloride, NH4, SO4 and metals in the sediment water interface and the interstitial water shows denitrification, sulfidisation and sulfide oxidation in the anoxic bottom water. The sediment composition shows that the phosphorus in the water is sequestered as carbonate flour apatite, and the metals precipitate as carbonate. The geo- accumulation index shows that the metals zinc, cobalt and nickel show moderate polluted nature than other metals. In general, the lake is less affected by anthropogenic activities. The chemical processes undergoing within the lake, like sulfidisation and sulfide oxidation, oxide dissolution and denitrification and organic matter degradation play an important role in the remobilization of the metals from the lake sediments.  相似文献   

11.
Lal. Kumar  Joshi  G.  Agarwal  K. K. 《Geotectonics》2020,54(3):410-427
Geotectonics - Study of morphometric parameters such as stream length (Lu) and stream length ratios (Rl), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc),...  相似文献   

12.
The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E–W for ~5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ~30 ° towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ~1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj–Tanakpur faults cause the neotectonic activities as observed. The role of transverse fault tectonics in the formation of the curvature cannot be ruled out.  相似文献   

13.
Summary The Palampur metavolcanics (PV) in the northwest Himalaya are part of the Late Archaean (2.5 Ga) Rampur flood basalt province (RFBP) which represents one of the oldest manifestation of worldwide mafic magmatism. The volcanics occur as mafic lava flows with evidence of two phases of deformation. The first phase resulted in recrystallisation which almost completely obliterated the primary mineralogy, and the second phase was of weak cataclasis. Immobile trace element ratios as well as cation percent Al - (Fe - Ti) - Mg indicate that the volcanics are tholeiitic in composition. The chemical characteristics, such as the decoupling between HFS and LIL elements i.e., distinct negative Sr, Nb and Ti anomalies in the double normalisation ratios spiderdiagram together with low Ti/Y and Zr/Y ratios, testify the rocks as low-Ti continental flood basalts. The chemical variations in the volcanics can be related to varying extents of partial melting of the mantle source(s), followed by fractional crystallisation (predominantly olivine and clinopyroxene over plagioclase). Positive correlation between LREE and Fe abundances, Ce-Nd and Y/Nd-Zr/Y data preclude any significant role of crustal contamination in the evolution of their bulk chemistry. The REE data and [Mg]-[Fe] relations rather suggest that the parental magma of the PV derived from non-pyrolitic source(s) which was heterogeneous with respect to enrichment in Zr, LREE and Fe/Mg ratios. Mantle metasomatism appears to be the main process of such source enrichment, possibly caused by the addition of a volatilerich silicate melt phase.[/ p]
Geochemie und Petrogenese der Palampur Metavulkanite, Lesser Himachal Himalaya, Indien
Zusammenfassung Die Palampur Metavulkanite (PV), im nordwestlichen Himalaya, gehören zur spätarchaiischen (2.5 Ga) Rampur Plateau-Basalt-Provinz (RFBP), die einen der ältesten, weltweiten Phasen von mafischem Magmatismus manifestiert. Die Vulkanite treten als mafische Lavaströme auf und zeigen zwei Phasen von Deformation. Die erste resultierte in einer Rekristallisation, die nahezu den gesamten primären Mineralbestand überprägt hat. Die zweite Phase ist durch schwache Kataklase repräsentiert. Immobile Spurenelementverhältnisse, wie auch die Kationenprozent von Al- (Fe- (-Ti) -Mg, deuten eine tholeiitische Zusammensetzung der Vulkanite an. Die chemischen Charakteristika, die im unterschiedlichen Verhalten der HFS und LIL Elemente deutlich werden, deutlich negative Sr, Nb und Ti Anomalien in den zweifach normalisierten Spiderdiagrammen, niedrige Ti/Y und Zr/Y Verhältnisse, bezeugen, dass es sich um Ti-arme, kontinentale Plateaubasalte handelt. Die chemischen Unterschiede innerhalb der Vulkanite können auf unterschiedliche Grade von Aufschmelzung des (der) Mantelmaterials(e), gefolgt von fraktionierter Kristallisation (vor allem Olivin und Klinopyroxen, untergeordnet Plagioklas), zurückgeführt werden. Positive Korrelation der LREE mit Fe, wie auch die Ce-Nd und Y/Nd-Zr/Y Daten schließen eine signifikante Rolle von Krustenkontamination in der Evolution der Gesteinschemie aus. Die REE Daten und die /Mg/-/Fe/ Verhältnisse lassen eher vermuten, dass das Ausgangsmagma der PV von einem nicht-pyrolitischen Material stammt, welches bezüglich Anreicherung an Zr, LREE und Fe/Mg Verhältnis heterogen gewesen ist. Mantelmetasomatose scheint der Hauptprozeß für diese Anreicherng des Ausgangsmaterials gewesen zu sein, die möglicherweise durch Zufuhr einer silikatischen Schmelzphase, reich an flüchtigen Bestandteilen, hervorgerufen wurde.[/ p]
  相似文献   

14.
Landslides are studied systematically in order to evaluate the nature of hazard and the damages to the human life, land, roads, buildings and other properties. This can be expressed in terms of risk, which is a function of hazard probability and damage potential. A risk map will indicate the priorities for landslide hazard management. A new approach to risk assessment mapping using a risk assessment matrix (RAM) is presented.  相似文献   

15.
To study neotectonics, the structural and morphotectonic aspects are studied along a part of mountain front region of Northeast Himalaya, Arunachal Pradesh, India. Unpaired river terraces are recognized near north of transverse Burai River exit, which is cut by an oblique fault. Across this fault, fluvial terraces are located at heights of 22.7 and 3 m, respectively, on the left and right banks. A water gap is formed along the river channel where the uplifted Middle Siwalik sandstone beds dipping 43° towards ENE direction, thrust over the Quaternary deposit consisting of boulders, cobbles, pebbles and sandy matrix. This river channel incised the bedrock across the intraformational Ramghat Thrust along which the rocks of the Middle Siwalik Formation thrust over the Upper Siwalik Formation. Recent reactivated fault activity is suggested north of the Himalayan Frontal Thrust that forms the youngest deforming front of the Himalaya. The uplifting along the stream channel is noticed extended for a distance of ~130 m and as a result the alluvial river channel became a bedrock river. The relative displacement of rocks is variable along the length of strike–slip faults developed later within the Ramghat Thrust zone. Longitudinal and Channel gradient profiles of Burai River exhibit knick points and increase in river gradient along the tapering ends of the profiles. The study suggests active out-of-sequence neotectonically active thrusting along the mountain front. Neotectonics combined with climatic factor during the Holocene times presents a virgin landscape environment for studying tectonic geomorphology.  相似文献   

16.
In the Lesser Himalayan region of Garhwal, an elongate, NW-SE trending zone of mylonitic rocks is developed along the Singuni Thrust within the metasedimentary formation of the Deoban-Tejam Belt. Detailed petrography of various mylonitic rocks indicates that a quartz and felspar porphyry was emplaced along the Singuni Thrust. This was initially metamorphosed in the almandine-amphibolite facies before profound ruptural or cataclastic and crystalloblastic deformation evolved mylonitic rocks in the green schist facies. Southwesterly dipping foliation and an equally prominent mica lineation plunging in the same direction are developed in these mylonitic rocks. The quartzite is also intensely cataclastically deformed in the green schist facies and is highly schistose with a prominent mica lineation normal to the trace of Singuni Thrust, Uttarkashi Thrust and Main Central Thrust in the ‘a’ direction of tectonic transport. In quartzite and mylonitic rocks, a probable contemporaneous development of the metamorphic and structural elements has been postulated along the Singuni Thrust during large scale tectonic movements. Normally exposed Gamri Quartzite is more metamorphosed near its base along the Singuni Thrust and Uttarkashi Thrust while the intensity of deformation increases near the top of normally exposed quartzite along the Main Central Thrust and, thus, signifying the role of thrusting in cataclastically deforming the rocks and contributing to the phenomenon of widespread reversal of metamorphism in the Lesser Himalaya.  相似文献   

17.
Despite similar geological and tectonic setting along the Himalayan orogen, distinct thermochronological/exhumational and seismicity variability exists between the Kumaun and the Garhwal regions of the NW‐ Himalaya. The processes responsible for such variability are still debated. To understand this, published thermochronological ages from several traverses across the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) have been correlated with the seismicity pattern in both Garhwal and Kumaun segments. The seismicity pattern coincides with the zone of rapid uplift and exhumation. The profiles of seismicity across the Kumaun and the Garhwal regions agree with the existence of the Main Himalayan Thrust (MHT) underlying the regions and reflect its geometry and architecture. Slip along the MHT is responsible for occurrence of seismicity on decade time‐scale and exhumation pattern on Myr time‐scale of the Himalaya.  相似文献   

18.
Uphalda gneisses (UG) is a crystalline klippe located near Srinagar in Garhwal Himalaya. These gneisses are compared with Debguru porphyroids (DP) (≈Ramgarh group) of Garhwal–Kumaun Himalaya and Baragaon mylonitic gneisses (BMG) of Himachal Himalaya. Petrographic study reveals that the deformation of UG was initiated at higher temperature (above 350°C) and continued till lowering of temperature and deformation led to the mylonitization.  相似文献   

19.
The Garhwal Lesser Himalayan Krol Belt contains two well developed diamictite horizons in the Late Palaeozoic Blaini Formation. Structureless and massive diamictites contain clasts of different shape, roundness and lithologies comprising mainly shale, slate, phyllite, quartzite, vein quartz and limestone dispersed in fine sandy argillaceous and calcareous matrix.Clast composition and petrography of the diamictites and other lithologies of the Blaini Formation reveal the presence of sedimentary and low grade metamorphic rocks in the provenance of the Blaini. The provenance seems to be the Lesser Himalayan terrain of the Simla Slate, Jaunsar and Shali-Deoban carbonates which had probably undergone structural deformation prior to the Late Palaeozoic. Two glacier advances deposited the diamictites near the shoreline of the Krol Basin during Late Palaeozoic.
Zusammenfassung Im Krol Belt des Kleinen Himalaya sind in der jungpaläozoischen Blaini-Formation zwei Horizonte mit sedimentären Diamictiten enthalten. Die strukturlosen und massiven Diamictite enthalten Klastika verschiedener Form, Rundung und Lithologie. So findet man Schiefer, Phyllite, Quarzite, Gangquarze und Kalke in einer feinsandigen, tonigen Matrix mit Karbonatanteilen. Die Zusammensetzung der Klaste und die Petrographie der Diamictite sowie der übrigen Gesteine der Blaini-Formation zeigen die Anwesenheit von Sedimentgesteinen und schwach metamorphisierten Gesteinen im Einzugsbereich der Blaini-Formation. Dieser Bereich kann die Simla-Schiefer und die Jaunsar- und Shali-Deoban-Karbonate des Kleinen Himalaya mit umfassen, die vermutlich vorjungpaläozoisch metamorphisiert wurden. Während zweier Gletschervorstöße sind die Diamictite randlich im Krol-Becken während des Jungpaläozoikums abgelagert worden.

Résumé Dans la ceinture de Krol de l'Himalaya mineur, la Formation de Blaini, d'âge Paléozoique supérieur, renferme deux horizons à diamictites sédimentaires. Celles-ci, massives et sans structure interne, contiennent des éléments clastiques de forme arrondi et lithologie différents; ce sont des schistes métamorphiques, des phyllites, des quartzites, du quartz-filonien et des calcaires disposés dans une matrice fine, argilosableuse avec participation carbonatée. La composition des éléments clastiques et la pétrographie des diamictites, comme celles des autres roches de la Formation de Blaini, montrent la présence de roches sédimentaires et de roches faiblement métamorphiques de même provenance que la formation de Blaini; cette provenance peut comprendre les schistes de Simla et les roches carbonatées de Jaunsar et de Shali-Deoban qui furent métamorphisées probablement avant le Paléozoique supérieur. C'est au cours de deux avancées glaciaires que les diamictites ont été déposées en bordure du bassin de Krol pendant le Paléozoique supérieur.

, — — . , , , , , , , , - . . , -, . , , .
  相似文献   

20.
The rate of sedimentation and the source of sediments in the lake basins of Nainital region, Kumaun Himalaya, have been estimated employing210Pb and210Ra methods. This has yielded a rate of sedimentation of 11.5, 4.70, 3.72, and 3.00 mm/yr in Nainital, Bhimtal, Naukuchiyatal, and Sattal lakes, respectively. The higher rate of sedimentation in Nainital lake, compared to other lakes, is related to faster erosion in the catchment aided by greater anthropogenic activity, while the slowest rate in Sattal lake is due to less erosion and more input of soil-derived material involving a slow rate of accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号