首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
位于红河断裂带西北端,滇西北断陷带东侧的程海断裂带第四纪活动显著,沿断裂盆山地貌与高山峡谷地貌发育,地质灾害频发.综合利用目视解译与野外调查,对程海断裂带沿线滑坡调查发现,沿程海断裂带共发育各类滑坡940余个,含巨型滑坡61个、大型滑坡125个、中型滑坡316个、小型滑坡438个.这其中有32个巨型滑坡、61个大型滑坡...  相似文献   

2.
近些年来一些地震表明,强震不仅发生在地表出露的活动断裂上,还发育在一些隐伏的未出露地表的构造上.大陆内部块体间的变形带不只是一条活动断裂,而是具有很大宽度的构造变形带,这已被大量的地震活动性资料所证实.因此,要正确评估地震危险性,就要研究构造带上地层变形的模型,而不仅是单条断裂的变形.湟水河隐伏断裂为一条隐伏在西宁市的断裂,位于西宁盆地中部,长12km,走向EW,浅层地震探测结果表明该断裂由两条正断层组成地堑式构造,横跨西宁地区的地层剖面研究结果指出湟水河隐伏断裂发育在宽缓背斜的核部,而宽缓的背斜和向斜由新近系红色泥岩组成.根据褶皱与断裂的关系认为,湟水河隐伏断裂为在北东向的区域主压应力作用下,褶皱变形过程中,在背斜的核部伴生形成的次级张性地堑式正断层.该褶皱及相关断裂发育在西宁盆地滑脱面之上,属于浅表性的断层,活动性不显著.  相似文献   

3.
阿尔金断裂带东段地区的地质构造特征及其动力学机制一直是地学工作者关注的焦点。近年来小震资料越来越多应用到活动断裂空间展布、深浅构造分析及动力学机制研究领域。本文应用双差定位法获得研究区域2008~2017年间6013次地震事件的精确定位数据,通过多条小震深度剖面清晰刻画出断裂系统的空间展布形态。综合石油地震剖面、人工地震宽角反射/折射剖面、人工地震深反射剖面,充分利用小震精确定位信息以及浅表活动构造研究成果,建立研究区断裂系统的深浅部构造模型。研究区莫霍面由北往南逐渐加深,存在三处断错,呈阶梯状展布,地壳内存在一条厚约10km的低速层,在该层以上为地震多发区,断裂系统总体呈"Y"字型,上部为一系列叠瓦状逆冲断裂,造成祁连山的隆升,向下并入一条主干断层。最后探讨了青藏高原东北缘地区构造运动的动力学机制,亚洲板块俯冲至祁连山前,上地壳以逆冲推覆构造模式造成上地壳增厚现象,而中下地壳主要为亚洲岩石圈地幔下插,上地幔的拖曳作用下发生流动引起地壳增厚,上下地壳整体增厚。  相似文献   

4.
W. Huang  W. Gao  G. Ding 《Tectonophysics》1996,260(4):259-270
In this paper, we study the relationship between Neogene volcanism and Holocene earthquakes in the Tanlu fault, eastern China. We find that fault segments through which Neogene and Quaternary magma have extruded do not show Holocene slip because they are covered by unfaulted basalts. In contrast, fault branches that are away from the Quaternary volcanic centers display Quaternary faulting and are responsible for earthquakes as recorded both historically and geomorphologically. Therefore, magma intrusion appears to modify fault activity in two different ways: (1) within the faults, the cooling magma serves as a cohesion or barrier, welding the faults so that they become stronger in resisting slip; (2) beneath the faults, the upwelling magma promotes slip of faults above the magma body, and hence generation of earthquakes. Physically, the first case results from contraction of the cooling magma, which causes a relative increase in fault-normal stress so that the fault failure resistance is enhanced. The second case results from the upward dynamic force and the heat brought in by the magma body, both of which cause the effective fault-normal stress to decrease so that the fault failure resistance is reduced. That could explain why earthquakes occur on faults bypassing the volcanic centers as typified in the Yishu fault zone and in the regions where heat flows are relatively high as shown in the Bohai Bay area.  相似文献   

5.
The 1988 Tennant Creek,northern territory,earthquakes: A synthesis   总被引:2,自引:0,他引:2  

Three large earthquakes with surface‐wave magnitudes 6.3–6.7 on 22 January 1988 were associated with 32 km of surface faulting on two main scarps 30 km southwest of Tennant Creek in the Northern Territory. These events provide an excellent opportunity to study the mechanics of midplate earthquakes because of the abundance of geological and geophysical data in the area, the proximity of the Warramunga seismic array and the ease of access to the fault zone. The 1988 earthquakes were located in the North Australian Craton in an area that had no history of moderate or large earthquakes before 1986. Additionally, no smaller earthquakes from the fault zone were identified at the Warramunga array, which is situated only 30 km from the nearest scarp, between the 1965 installation of the array and 1986. The main shocks were preceded by a swarm of moderatesized (magnitude 4–5) earthquakes in January 1987 and many smaller aftershocks throughout 1987. Careful relocation of all teleseismically recorded earthquakes from the fault zone shows that the 1987 activity was concentrated in an area only 6 km across in the gap between the two main fault scarps. The main shocks also nucleated in the centre of the fault zone near the 1987 activity. Field observations of scarp morphology indicate that the scarp is divided into three segments, each showing primarily reverse faulting. However, whereas the western and eastern segments show movement of the southern block over the northern, the central scarp segment shows the opposite, with the northern block thrust over the southern block.

Analysis of the first arrival times at Warramunga suggests that the three main shocks were associated with the western, central and eastern scarp segments, respectively. The locations of aftershocks determined using data from temporary seismograph arrays in the epicentral area define three inclined zones of activity that are interpreted as fault planes. In the western and eastern portions of the aftershock zone, these concentrations of activity dip to the south at 45° and 35°, respectively, but in the central section the aftershock zone dips to the north at 55°. Focal mechanisms derived from modelling broadband teleseismic data show thrust and oblique thrust faulting for the three main shocks. The first event ruptured unilaterally up and to the northwest on the westernmost fault segment, while the third main shock ruptured horizontally to the southeast. Modelling of repeat levelling data from the epicentral area requires at least three distinct fault planes, with the eastern and western planes dipping to the south and the central plane dipping to the north. The combination of scarp morphology, aftershock distribution and elevation data makes a strong case for rupture of fault planes in conjugate orientation during the 22 January 1988 Tennant Creek earthquakes. More than 20000 aftershocks have been recorded at Warramunga and activity continues to the present‐day with occasional shocks felt in the town of Tennant Creek and some recent off‐fault aftershocks located directly under the Warramunga seismic array. Stratigraphic relationships exposed in trenches excavated across the scarps suggest that during the Quaternary, a large earthquake ruptured the surface along one segment of the 1988 scarps.  相似文献   

6.
We studied fault scarps produced by prehistoric earthquakes in the Barguzin fault zone and estimated the ages and the magnitudes of the scarp-forming events in each scarp segment from their structure, morphology, and scarp parameters. Morphological and structural data reveal two to four surface-rupturing events with displacement up to 5–9.5 m, and two events showed 14C ages of 4.5 and 9 kyr. The area of the Barguzin Fault may have experienced six 7.5 ≤ M < 8.0 earthquakes and two M ≥ 8.0 (8.0–8.2) events for the past 10–12 kyr.  相似文献   

7.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   

8.
招平断裂带是我国著名的金矿成矿带。断裂的空间展布形态特征对寻找断裂构造控矿型金矿床具有重要作用。通过断裂的遥感解译,研究了招平断裂带主断裂的走向、主断裂地表破碎带宽度以及主断裂起伏程度等成矿有利度指标,构建了基于断裂距离场的成矿有利度分析模型,并圈定研究区域成矿远景区11处,为区域地质、物化探等勘查工作提供了指导性意见。  相似文献   

9.
海原-六盘山断裂是青藏高原东北缘的大型边界断裂带,是中国大陆典型的地震危险区。地壳构造加载特征的定量研究有助于分析区域孕震环境,参考青藏高原东北缘GPS形变和岩石圈精细结构等资料,本文建立海原-六盘山断裂带周缘的三维岩石圈分层模型,分析现今构造加载作用下区域地壳形变和应力演化特征。数值计算结果显示:青藏高原东北缘现今处于以北东-南西向的水平挤压为主导和北西-南东向的水平引张的变形特征。青藏高原东北缘中-下地壳流变性质影响上覆脆性地壳应力环境,中地壳较低粘滞系数对应的模型地壳应力计算值与研究区实际地壳应力场相近。海原断裂中-西段构造加载作用显著,具有相对较高的库仑应力积累和最大剪应力分布;而六盘山断裂周缘地壳应力和最大剪应力小于海原断裂带。构造应力积累的空间分布差异说明六盘山断裂具有较弱的构造孕震环境,而研究区走滑型断裂的孕震加载作用显著。尽管六盘山处于较低的应力状态,但仍不能轻易忽视其长期存在的强震空区所暗示的发震潜力。  相似文献   

10.
The study region is located in the Lower Tagus Valley, central Portugal, and includes a large portion of the densely populated area of Lisbon. It is characterized by a moderate seismicity with a diffuse pattern, with historical earthquakes causing many casualties, serious damage and economic losses. Occurrence of earthquakes in the area indicates the presence of seismogenic structures at depth that are deficiently known due to a thick Cenozoic sedimentary cover. The hidden character of many of the faults in the Lower Tagus Valley requires the use of indirect methodologies for their study. This paper focuses on the application of high-resolution seismic reflection method for the detection of near-surface faulting on two major tectonic structures that are hidden under the recent alluvial cover of the Tagus Valley, and that have been recognized on deep oil-industry seismic reflection profiles and/or inferred from the surface geology. These are a WNW–ESE-trending fault zone located within the Lower Tagus Cenozoic basin, across the Tagus River estuary (Porto Alto fault), and a NNE–SSW-trending reverse fault zone that borders the Cenozoic Basin at the W (Vila Franca de Xira–Lisbon fault). Vertical electrical soundings were also acquired over the seismic profiles and the refraction interpretation of the reflection data was carried out. According to the interpretation of the collected data, a complex fault pattern disrupts the near surface (first 400 m) at Porto Alto, affecting the Upper Neogene and (at least for one fault) the Quaternary, with a normal offset component. The consistency with the previous oil-industry profiles interpretation supports the location and geometry of this fault zone. Concerning the second structure, two major faults were detected north of Vila Franca de Xira, supporting the extension of the Vila Franca de Xira–Lisbon fault zone northwards. One of these faults presents a reverse geometry apparently displacing Holocene alluvium. Vertical offsets of the Holocene sediments detected in the studied geophysical data of Porto Alto and Vila Franca de Xira–Lisbon faults imply minimum slip rates of 0.15–0.30 mm/year, three times larger than previously inferred for active faults in the Lower Tagus Valley and maximum estimates of average return periods of 2000–5000 years for M 6.5–7 co-seismic ruptures.  相似文献   

11.
何祥丽  李海兵  王焕  张蕾  孙知明  司家亮 《岩石学报》2020,36(10):3209-3224
断裂蠕滑可以连续释放部分构造应力,但仍可能造成重大的地质灾害,甚至具有发生大地震的可能性。断层岩是断裂作用中的直接产物,其物质组成和内部构造可为揭示断裂带滑移机制提供关键信息。2008年Mw 7.9汶川地震中破裂的龙门山灌县-安县断裂带具有蠕滑性质,是探究大陆内部蠕滑断裂滑移机制的最佳案例。本文以龙门山灌县-安县断裂带地表探槽和深部钻孔的断层岩为研究对象,通过碎屑统计、X射线粉末衍射矿物分析、光学显微镜和扫描电镜观测,结果显示该断裂带断层泥碎屑含量和颗粒大小均小于断层角砾岩,其粘土矿物含量高达50%以上,且断层岩中普遍发育粘土-碎屑组构以及拖尾构造、似S-C组构等多种压溶构造。综合分析发现压溶作用、低摩擦系数物质以及颗粒滑移对灌县-安县断裂带的蠕滑变形都发挥着重要作用,并且三者相辅相成,因此认为灌县-安县断裂带的蠕滑过程主要是压溶作用和摩擦-颗粒滑移机制共同作用,该认识可更好地了解地震周期并为区域防震减灾提供科学依据。  相似文献   

12.
作为郯庐断裂带北段主干的依兰-伊通断裂, 其新构造活动性与活动规律仍然存在不同的认识.本次工作通过详细的野外调查, 发现该断裂内活断层广泛存在, 由东、西两支北东走向的主干活断层构成, 沿着古近纪地堑边界断层发育.这些活断层主要呈破碎型结构, 多为逆右行平移活动.通过对这些活断层一系列实测擦痕反演应力场, 显示它们多是在东西向挤压中活动的, 而现今应力场转变为北东东-南西西向区域性挤压.依据本次野外观察与14 C定年, 并结合前人定年结果与近代地震分布, 表明依兰-伊通西支活断层的最新活动时代为全新世与晚更新世相间, 而东支活断层的最新活动时代主要为早-中更新世.依兰-伊通断裂内活断层显示了明显的差异性活动, 表现为西支的活动强度明显大于东支, 西支的最新活动时代皆晚于东支, 沿走向上活动性强、弱相间与最新活动时代不断变化, 以及近代地震活动不均一分布.它们沿走向上的分段性、差异性活动主要是因为被一系列北西向断层切断所致.  相似文献   

13.
骆冠勇  蔡奇鹏  吴宏伟 《岩土力学》2012,33(10):2985-2990
地震断层错动会引起上覆土层变形,从而造成断层附近的建筑结构、管线产生附加的变形和内力引起破坏。通过一个土工离心机试验分析上覆饱和黏土层在4步连续断层错动作用下的静力响应行为。着重分析断层错动引起的地层变形的范围、不均匀沉降区的分布特点、剪切裂缝在土层传播路径及地表开裂的位置等工程上重点关注的问题。得到以下几点认识:(1) 基岩断层错动引起的地层变形范围基本上不受基岩错动量大小的影响。(2) 断层错动引起地层的不均匀沉降区基本呈三角形分布,其地表宽度约为1倍左右的土层厚度。(3) 基岩错动引起的主剪切裂缝基本沿竖直方向向上传播,其传播距离取决于基岩错动量及土体的破坏应变。(4) 基岩断层错动在主剪区的下盘一侧边缘会产生张拉裂缝,且产生张拉裂缝所需基岩错动量远小于产生剪切裂缝所需的错动量。  相似文献   

14.
Several active fault zones were studied in the southern Siberian Platform along the Kovykta–Sayansk–Irkutsk gas pipeline. Late Cenozoic seismogenic faults are observed here. The fault zone in the Biliktuika River valley shows the strongest displacements and deformations. The radiocarbon dating of buried soil horizons for this fault was compared with seismological data on the earthquakes observed in this area. The comparison permitted attributing the latest slip along the fault to the 25 May 1887 earthquake.  相似文献   

15.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   

16.
The NW–SE-trending Dinar fault is an active normal fault upon which the 1 October 1995 earthquake ( M  = 6.1) occurred. The 1995 earthquake resulted in a c. 10-km-long surface rupture with the south side down-thrown by 50 cm. Investigations of two trench sites perpendicular to the 1995 rupture suggest at least two prior large earthquakes in historical times. Radiocarbon dates and historical records constrain the age of events between 1500 bc and ad 53, event 2 possibly coinciding with the earthquake that damaged Dinar (the ancient city of Apamea Kibotos) in c. 80 bc and event 1 around 1500 bc. Surface displacements determined for events 1 and 2, compared to the 1995 surface faulting, indicate that M > 6.8 earthquakes were associated with each rupture. Using the total displacement in trenches, a slip rate of about 1 mm yr−1 can be estimated for the Dinar fault. Observations suggest that the return period for large earthquakes in the Dinar area is about 1500–2000 years.  相似文献   

17.
New elements on the seismicity of Portugal and new focal-mechanism solutions of earthquakes with epicentres situated off the coast of the Portuguese mainland and in the Azores region are presented. Historical seismicity data show that in the territory of the Portuguese mainland there are active faults that are responsible for earthquakes that have caused important damage and many casualties. However, most of the intraplate earthquakes with epicentres situated in the Portuguese mainland or near the shore are normally of small magnitude and this renders difficult their interpretation in the light of focal mechanisms. A solution for one earthquake, with magnitude 5 and epicentre at the Nazaré submarine canyon, is presented.Southwestwards of Cape St. Vincent there is an important seismic zone responsible for high-magnitude earthquakes such as that of 1 November 1755. This zone is situated in the region where the extension of the Messejana fault into the ocean joins with the Azores-Gibraltar fault.The seismicity of the area situated between the western coast of the Portuguese mainland and the Azores increases approximately along the 15°W meridian, from the latitude of the Azores-Gibraltar fault up to 44°N. Focal mechanisms of earthquakes with epicentres situated along this line show very similar solutions.The interpretation of the focal mechanism solutions of the earthquakes with epicentres situated in the studied area shows that the stress field trends approximately NW-SE. It is assumed that this stress field results from the interaction of the Eurasian and African plates; however, this direction is not maintained in the Azores region.  相似文献   

18.
The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10−20 m2. Water permeability as low as 10−20 m2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.  相似文献   

19.
甘孜地区雅拉河段地热系统特征及控制因素   总被引:1,自引:0,他引:1  
林正良 《地质与勘探》2015,51(4):764-771
综合应用区域地质、地震、地球化学等资料,对甘孜地区雅拉河段地热系统及其主控因素进行研究。分析认为,甘孜地区地热属于典型的对流型地热系统,雅拉河断裂破碎带及板岩中发育的大量裂隙共同构成了研究区的热储体,这些热储体沿雅拉河断裂带不均匀分布。研究区充沛的大气降水以及季节性的冰雪融水为地热系统提供充足的水源。雅拉河断裂与色拉哈断裂之间大范围相对平坦的区域以及大量储水洼地为地热系统中的水源提供存储空间。该地区地表裂隙发育,利于地表水向下渗透,是地下水的主要补给通道。色拉哈断裂的强烈活动为浅层地下水在重力作用下进一步向深层运移提供重要流体通道。雅拉河断裂带的地势相对低,断裂破碎带是深层流体上涌的重要通道。在流体供给区与出露区的重力势能差以及两条走滑断裂带压力差共同作用下,流体经深部热源加热后在流体通道内形成持续的热流体循环系统。  相似文献   

20.
龙泉山断裂带隐伏断层氡气特征及其活动性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
龙泉山断裂构造带作为龙门山推覆带的前陆隆起,严格控制了成都平原东边界,其活动性历来受到人们的关注。通过对龙泉山断裂带的氡气进行测量,可以有效地判断隐伏断层的位置及其活动性。测量结果显示,龙泉山断裂带北段东坡活动性强于西坡,主断层的活动性明显强于边缘隐伏断层,4条断层的活动性由强到弱依次为合兴场断层红花塘断层龙泉驿断层松林场断层。龙泉山断裂带同一条断层在地表由多个破碎带组成,其氡气异常特征与断层活动性和破碎带特征呈正相关性,即断层活动性越强,氡气异常特征越显著。龙泉山断裂带氡气平均异常浓度是背景值的9.6倍,将各异常带峰值浓度与背景值进行对比分析,大致归纳出了龙泉山地区隐伏断层活动性的相对判别标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号