首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many states within the United States as well as many other countries have promulgated regulations addressing public health, consumer protection, and truthin-labeling aspects of the extraction, bottling, and labeling of commercially bottled springwater intended for public consumption. Many of these regulations are inconsistent, suggesting a need for more uniform standards in acceptable extraction methods and legal/technical definitions of spring and springwater. An objective of the extraction or collection method is protecting the quality and integrity of the springwater, especially against microbial contamination. A summary of microbiological issues associated with groundwater and springwater is presented. Acceptable extraction methods can be either surface collection boxes/houses at the discharge point of the spring or a subsurface borehole or gallery interception system. Although extraction wells can provide total protective isolation of the water, a potential concern with that method is providing assurance that the extracted water is in fact the same water that feeds the adjacent spring. Criteria for testing this requirement are suggested in the paper.  相似文献   

2.
Microbiological studies have always had an important role in the evaluation of drinking water quality. However, since geological processes are the most important factors controlling the source and distribution of chemical elements in natural waters, the importance of geochemical data must not be underestimated. This study presents data on pH, conductivity and concentrations of 69 elements and ions (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, Br, HCO3, Cl, F, NH4+, NO2, NO3, PO43−, SO42−, SiO2) from 186 bottled mineral waters of 158 different Italian name brands. Analyses show a large range in concentrations for most of these elements, with variations up to four orders of magnitude. Our data demonstrate that some elements (such as Be), generally considered unlikely to occur, can instead reach surprisingly high levels in drinking water, and also how packaging can release some trace elements to the bottled water. Data analysis shows that the implementation of an international database of bottled water geochemistry and of potential toxicological effects is of paramount importance to provide a robust data set which would be useful to set international action levels and guidelines to secure bottled water quality, whose consumption has steadily increased in the recent years. A new formula to calculate nitrate and nitrite tolerable concentration levels in waters intended for human consumption is proposed, to take into account that about 5% of dietary nitrate in humans is converted to nitrite.  相似文献   

3.
 A field study was conducted to assess variations in physico-chemical characteristics of water of the springs located within the boundary of a Central Himalayan town where the springwater is used for drinking purposes. Monitoring of 12 springs was carried out for three seasons (winter, summer and monsoon). The results indicate direct influence of unplanned sewage disposal on the springwater quality as reflected by significant regional variations in the concentration of nitrates, chlorides, sulfates, sulfides and electrical conductivity. Population density varies within the town from 3110 to 14 137 persons/km–2 and has direct relationship with water quality. Springs located in the densely populated area had higher concentrations of all these compounds. Concentrations of nitrates up to 60 ppm were observed in some springs, making water unsuitable for human consumption. No significant changes were observed in springwater quality during different seasons. Received: 3 February 1995 · Accepted: 27 February 1996  相似文献   

4.
In Europe different types of water are marketed, each strictly defined by EC Directive 80/777 (Natural Mineral Water, Spring and Table Water) or 80/778 (Drinking Water). In Germany, an additional type of water is common in the market: curative/medical water. Product quality and safety, registration as medicine, and pharmaceutical control are defined by the German Federal Medicine Act. A medical water is treated as any other medicine and may be sold only in pharmacies. The use of any water in Germany is controlled and strictly regulated by the Federal Water Act (Fricke 1981). The following requirements are set by the act: (1) No water use without a permit, which is limited in time and quantity. (2) No single or juristic person may own water. (3) Water resources of public interest and their recharge areas are to be protected by the definition of water protection zones. (Natural mineral water is not of public interest and therefore is not required to be protected by the definition of water protection zones, although it represents a market value of more than US$2 billion. Medical water is of public interest). The definition of water protection zones impacts private property rights and has to be handled carefully. In order to protect water resources, sometimes the economic basis of a traditional industrial and/or agricultural infrastructure is destroyed. The concerns and needs all citizens, including industry, must be considered in analyzing the adequacy of water protection zones.  相似文献   

5.
Sixty-one still bottled water samples, representing 41 locations, were collected from Hellas for the purpose of studying the geochemistry of ground water. Since, the dominating lithology comprises limestone, dolomitic limestone, marble, and mafic–ultramafic rocks (ophiolites), the dominant major ions in Hellenic bottled waters are Ca2+, Mg2+, CO32− and HCO3, and are, thus, classified in the Ca2+–Mg2+–HCO3 hydrochemical facies. The source aquifers of Hellenic bottled water are apparently continuously replenished by fresh water. Comparison of values of Ca, Mg, K, Na, Cl, HCO3, NO3, SO42−, pH and electrical conductivity, displayed on bottle labels with those of this study, has shown that there is a fairly good correlation between the two data sets, suggesting that the geochemistry of source aquifers is relatively stable over time, at least from 1998 to 2008.  相似文献   

6.
The geochemistry of the major components and trace elements in Slovenian bottled water available on the market in 2004 and 2008 was studied. The waters were predominantly from the Radenska and Rogaška Slatina mineral water source region. In this paper, a comparison of two data sets from two time periods was performed based on the Kolmogorov–Smirnov independent two-sample test. The bottled waters in the data sets were in agreement with drinking water and mineral water standards. Discrepancies were only present for B and Ni in highly mineralised waters. Analyses of the labels on the bottle packaging showed that the analytical results were in general agreement with the values reported on the labels. At the same time, the values reported on the labels by the producers showed that the chemical compositions of products available on the market for longer time periods vary. Slovenian bottled waters are predominantly controlled by a CaCO3–CO2–H2O system where Na, Cl and SO42− are present as the major components, in different combinations.  相似文献   

7.
The market for mineral water has been growing steadily over the last few years. Germany is the country with the highest number of bottled mineral water brands (908 bottled water samples from 502 wells/brands were analyzed). The per capita consumption of mineral water in Germany in 2003 was 129 L. A wide range of values of one to seven orders of magnitude was determined for 71 elements in the bottled water samples analyzed by ICP-QMS, ICP-AES, IC, titration, photometric, conductometric and potentiometric methods. A comparison of the element concentrations and the legal limits for both bottled and tap water (EU, Germany, US EPA, WHO) shows that only 70% of the 908 mineral water samples fulfill the German and EU drinking water (i.e., tap water) regulations for all parameters (not including pH) for which action levels are defined. Nearly 5% of the bottled water samples not fulfill the German and EU regulations for mineral and table water. Comparison of our results with the current German and European action levels for mineral and table water shows that only 42 of the bottled water samples exceed the limits for one or more of the following elements: arsenic, nitrate, nitrite, manganese, nickel and barium concentrations. Ten of the bottled water samples contain uranium concentrations above the 10 μg/L recommended limit.  相似文献   

8.
Ground water bodies are important resources for drinking water, including bottled water, and national regulatory bodies should assess their quality continuously. For this purpose, an effective assessment system of bottled water at source should be installed. A hierarchical nested balance design for the collection of random primary duplicate water samples, and their replicate analyses, is described, and the use of robust analysis of variance to estimate measurement uncertainty. The latter is subsequently used for the development of four probabilistic categories for the classification of element concentrations in bottled water with respect to legislative standard values, i.e., (a) compliant (below Lower Threshold Limit), (b) possibly non-compliant (possibly above Standard Value), (c) probably non-compliant (probably above Standard Value), and (d) non-compliant (above Upper Threshold Limit), for the reliable assessment of compliance to European Union and national drinking water standards. Overall, the quality of European bottled water is considered good, with the exception of a few that have concentrations in Mn, B, Ba, As, Fe, Ni, Se, and Al, which are definitely above the estimated respective Upper Threshold Limit and, thus, exceed the corresponding legislative standard value defined by European Union directives. National regulatory bodies should verify these results, and install an efficient assessment system of compliance to regulatory limits using the methodology described in this paper.  相似文献   

9.
The use of bottled mineral waters use is increasingly becoming popular and the need for better knowledge of their chemical composition is a key issue for defining their quality, particularly for those elements that are not monitored on a regular basis. The link between geology and water chemistry is well known and can lead to extreme differences in element distribution and is an issue that needs to be addressed. Such an opportunity has been provided by a project of the EuroGeoSurvey Geochemistry Expert Group aimed at the characterization of groundwater geochemistry using bottled mineral waters purchased in supermarkets all over Europe. On these waters pH, conductivity and concentrations of 69 elements and ions were measured at the BGR geochemical laboratories. On a total of 1785 “samples”, 158 represent waters bottled in Italy in 126 different sites scattered throughout the country. Most of the purchased mineral water is packaged in PET bottles. In this paper, the dataset concerning Italy has been used to provide an overview on the relationship between natural concentration of the determined chemical elements in groundwater and geo-lithological features. These relationships have been investigated mostly taking into account the surface geology and other information available on water sources. Application of R-Mode factor analysis to the data set allowed the determination of the possible relationship between the distribution of individual elements and lithology or other surface enrichment phenomena. In particular waters draining through volcanic rocks are enriched in elements such as As, B, Br, Cl, Cs, I, K, Li, Na, NO3, PO43−, Rb, Sc, SiO2, Sr, Te, Ti, and V up to 3 orders of magnitude higher than waters draining through other lithologies. REE and Y show significant difference in median concentration due to interaction of waters with plutonic rocks. Many elements have a large spread of concentrations, which reflects natural variations and interaction with particular lithologies. One of the five R-mode factor analysis associations, recognized as being representative of elements analysed shows high nitrate and V loadings along with As, PO43− and Se. The latter association probably reflects a sign of anthropogenic contribution in some aquifers in volcano-sedimentary or silico-clastic deposits and in intensively cultivated areas.  相似文献   

10.
The results presented in this paper on uranium in bottled and tap water were determined within the scope of the project “European Groundwater Geochemistry: Bottled Water” of the Geochemistry Expert Group of EuroGeoSurveys. The analyses of bottled water provide an inexpensive approach to obtain information about European groundwater geochemistry. For this study, the uranium concentrations in 1785 European mineral water samples were analyzed by ICP–QMS in the BGR laboratories. The dataset is used to obtain a first impression about natural concentration levels and variation of uranium in groundwater (and bottled water) at the German and European scale.  相似文献   

11.
In the past researches conducted on the territory of Serbia, 5 regional geotectonic units have been distinguished with registered occurrences of 230 mineral springs. Recent analyses of the bottled mineral waters quality have not included systematic examinations of micro-components present in these waters. Based on the analyses of the bottled mineral waters (EuroGeoSurveys Geochemistry Expert Group), it has been observed that the water quality is greatly influenced by the chemical composition of igneous intrusions, regardless of the fact that the analyzed waters have been taken from different aquifers (Neogene sediments, limestone, flysch, schist).  相似文献   

12.
13.
In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Floridas first magnitude spring waters (discharge 2.8 m3/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and 15N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most 15N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35 years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, 3H/3He) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and 3He data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix.  相似文献   

14.
辛安泉是北方第二大泉,泉域面积13000km^2。根据环境水文地质条件,将拉域划分为四个子系统。采用饮用水卫生标准和污染起始值对系统内地下水水质进行评价,并对其污染成因进行了分析。  相似文献   

15.
Bottled waters are an increasingly significant product in the human diet. In this work, we present a dataset of stable isotope ratios for bottled waters sampled in Greece. A total of 25 domestic brands of bottled still waters, collected on the Greek market in 2009, were analysed for δ18O and δ2H. The measured stable isotope ratios range from − 9.9‰ to − 6.9‰ for δ18O and from − 67.50‰ to − 46.5‰ for δ2H. Comparison of bottled water isotope ratios with natural spring water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, showing that bottled water isotope ratios preserve information about the water sources from which they were derived and suggesting that in many cases bottled water should not be considered as an isotopically distinct component of the human diet. This investigation also helped to determine the natural origin of bottled water, and to indicate differences between the natural and production processes. The production process may influence the isotopic composition of waters. No such modification was observed for sampled waters in this study. The isotopic methods applied can be used for the authentication of bottled waters and for use in the regulatory monitoring of water products.  相似文献   

16.
The Polish legislation gives groundwaters declared as curative ones a high rank of basic minerals or, in well-defined cases, of common minerals. Both kinds of minerals are subject of mining law regulations. This explains the use of the word deposit which, in the case of groundwaters, often does not reflect reality.  相似文献   

17.
李维树  夏晔  乐俊义 《岩土力学》2006,27(Z1):1170-1174
通过对三峡库区典型滑带不同状态的原位直剪对比试验,研究了粘土、粉质粘土及土石混合体三类滑带(体)土在不同含水状态下的直剪强度参数及c,φ值随含水率的变化规律。在大量的数据基础上建立了滑带(体)土c,φ值与含水率之间的经验关系,分析了水对不同性质的滑带(体)土的作用机理,得出了蓄水或者含水率变化后滑带(体)土c,φ值的经验公式,量化了含水率变化(水位涨落)对直剪强度参数的弱化程度。  相似文献   

18.
Background Values of potentially toxic elements (PTEs) in soils are typically obtained from total or pseudo-total contents, but not represent the fraction of these elements available for plant uptake due to the predominance of the stable forms. Available contents to plants, in turn, tend to be positively correlated with the potential risk of contamination of PTEs. In this study, we determined the available contents, extracted with Mehlich-III solution, of Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in Oxisols and Ultisols in the state of Pará, Eastern Amazon, Brazil. Available contents ranged from low to very low when compared to soils from other Brazilian regions and from other countries. Contents of PTE were higher in Oxisols than in Ultisols, except for Cu and Ni. In the Oxisols, PTEs were positively correlated with clay content. However, PTEs were not correlated with soil pH, organic matter and cation exchange capacity. In the Ultisols, Ba, Cu, Pb, and Mn contents were significantly correlated with pH, while Ni contents were correlated with the contents of silt.  相似文献   

19.
Within the framework of the Pan-European project about the geochemistry of bottled mineral waters in Europe launched in 2007 by the European Geological Surveys (EGS) Geochemistry Expert Group fourteen brands of bottled natural waters from Croatia of both mineral and spring types were evaluated for getting more coherent spatial information about the natural variation of element concentration in bottled waters found at the European market. Results of chemical analysis show that not a single one out of fourteen analyzed bottled waters from Croatia exceeds the Croatian water standards sanctioning thereby their suitability for human consumption. Also, statistical tests performed for 41 analytes (including pH and EC) clearly show that the water chemistry is in a high degree of conformity with regional geology, depending on structural, stratigraphic and, above all, lithological diversity of aquifers. Thus Dinaric and Pannonian parts of Croatia differ largely with regard to their water types: Dinaric region is completely lacking mineral water types while, on the other side, in the Pannonian region even the spring waters show stronger mineralization in comparison with their Dinaric counterparts. Typically, all natural waters from Croatia bear the bicarbonate (HCO3) signature. However, Ca–Mg cation pair combination is characteristic of spring waters while Na–K dominates in the mineral waters.  相似文献   

20.
基于级别特征值的岩溶含水层水质模糊综合评价修正   总被引:1,自引:0,他引:1  
为改进传统水质模糊综合评价中存在评价指标不能全面反映水质状况、评价结果不清晰,评价等级区分度不明显等缺陷,文章以位于六枝特区威宁-郎岱褶皱群的第一层岩溶含水层水质为例,根据岩溶区水质评价特点和研究区含水层超标因子特征,建立涵盖物理、化学和微生物等因子的评价指标体系,利用级别特征值对传统模糊综合评价结果进行了适当修正,并与综合污染指数法、传统模糊评价综合法的评价精度进行定量化比较。研究结果表明:六枝特区的研究区探采点水质综合评价等级都达到Ⅲ类生活饮用水卫生标准,但仍有71%的探采点存在氨氮(NH4+)、氟化物(F-)、高锰酸盐指数(CODMn)、溶解性总固体(TDS)和大肠杆菌等指标超标,且超标因子浓度呈点状扩散分布于三叠系中下统地层;另外,传统模糊综合评价中有57.1%的水质达到Ⅰ类标准,与多个探采点存在因子超标的情况不符,而通过级别特征值修正的模糊综合评价结果中分别有57.1%和28.6%的探采点水质为Ⅱ类或Ⅲ类标准,与着重突出最大超标因子权重的综合指数法类别标准差低0.011。因此,基于级别特征值的模糊综合评价能有效的反映水质整体水平,探采点水样超标因子浓度和同类水质的区分度,评价结果合理、可信。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号