首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
47个腾冲火山岩样品的K-Ar年龄值域在0.09和17.84Ma之间。4条火山岩的40Ar/36Ar-40K/36Ar等时线年龄分别为2.93、0.81、0.31和0.13Ma。火山喷发的时代从中新世到更新世,喷发的高潮在晚更新世。腾冲火山目前还不是死火山,而腾冲及其邻区的热事件(侵入—热变质—喷发)又是连续发生的。20个样品的Rb和Sr含量、稳定Sr同位素初始比(0.70578—0.71437)以及其它地球化学资料还表明,这些火山岩是属于板块碰撞带生成的高钾钙碱性岩浆系列。火山岩的母岩浆来源于地幔的玄武岩浆,但在上升过程中受到过富含放射性成因Sr的地壳物质的强烈渐进混染。  相似文献   

2.
确定火山岩的喷发期次是重建火山喷发相关的第四纪环境、研究晚新生代地球动力学和预测火山喷发危险性的前提.激光~(40)Ar/~(39)Ar年代学方法对年轻火山岩样品的定年有明显的优势,具有自动化测试稳定、本底低、高灵敏度等特点,适用于年轻火山岩样品的定年工作.文章采用激光~(40)Ar/~(39)Ar年代学方法对腾冲火山岩区主要岩石单元进行了精细的年代学研究,通过常规的数据处理得到了腾冲火山喷发的时限为0.025~5.1Ma.但年轻火山岩定年因放射成因的~(40)Ar含量极少,偶然因素较多,数据的稳定性较差,甚至得出偏差很大的年龄结果,其分期结果值得商榷.另外,传统分期方法缺乏统一的时间尺度标准,无法对腾冲火山喷发进行严格的时间限定,导致对期次划分认识的分歧.文章尝试引入新的数学模型,对13件样品一共378个年龄测试值进行了重新分期,得到了包含3个波形曲线、彼此独立的表观年龄概率分布图,利用高斯数学模型对波形进行分析,分别对确认的3个正态波形涵盖的年龄数据进行等时线年代学计算,很好地限定了腾冲火山的3期喷发,分别为上新世((3.78±0.04)Ma)、中更新世早期((0.63±0.03)Ma)和中更新末期到晚更新世早期((0.1~(39)±0.005)Ma).这3期喷发时限具有相同的实验精度和时间尺度,降低了年龄数据的误差和偶然性,能准确地限定和代表腾冲火山的整体喷发分期.  相似文献   

3.
本文概略介绍了中国大陆4个火山(岩)为主题的世界地质公园和16个国家地质公园,以及中国香港和中国台湾的两个地质公园。文章还介绍了这些地质公园火山岩喷发时代、火山类型、大地构造环境和火山(岩)景观特征与分类。它们的喷发时代主要为更新世-全新世、中新世、始新世和白垩纪。四个时期的火山地质公园,在不同年代火山中均具代表性与典型性,为中国火山/火山岩研究提供了真实的材料。作者还针对火山地质公园建设现状提出加强科学研究与实施解说系统工程两条建议。  相似文献   

4.
腾冲新生代火山位于印度板块与欧亚板块碰撞边界上.该区域构造活动强烈,火山具有潜在的喷发性,研究腾冲火山起源对于认识板块俯冲过程、火山活动规律具有重要意义.本文总结了近年来腾冲火山起源的最新进展,包括地球物理和地球化学的新成果,探讨了火山岩浆来源和火山形成的深部动力学机制.这些研究发现腾冲火山的形成主要与板块俯冲有关,早期俯冲形成的残余大洋板片和现今俯冲的印度板块都可能是交代物质的来源,大洋板片在深部释放融流体形成富集软流圈地幔和岩石圈地幔.后期岩石圈的伸展作用可能诱导了富集软流圈地幔的部分熔融,导致岩浆物质喷出地表.根据87Sr/86Sr与SiO2的相关性,得到腾冲玄武岩遭受到地壳混染作用不明显,而安山岩和英安岩遭受地壳混染作用明显.地球物理成像显示腾冲火山下方地壳中有不同尺度的岩浆囊,其中上地壳有若干小岩浆囊,在中下地壳有大岩浆囊.地震成像显示地壳中的低速体向下延伸至上地幔,很可能反映地壳中的岩浆囊有地幔热物质的持续供给.  相似文献   

5.
长白山天池火山造锥粗面岩新的K-Ar年龄   总被引:1,自引:0,他引:1  
根据采集样品的野外产状,结合前人对天池火山造锥阶段粗面岩时代的研究以及本文给出的新的K-Ar年龄,比较了天池火山北坡和东北坡的造锥粗面岩喷发时代,分析了不同期次喷发的粗面岩的覆盖范围,发现天池火山东北坡粗面岩年龄明显新于北坡粗面岩年龄。天池火山东北坡造锥阶段粗面岩的最老年龄距今0.38Ma,属于中更新世晚期,是第3造锥阶段的喷发物。在东北坡未发现第1造锥和第2造锥阶段的喷发物。新给出的天池火山北侧和东侧2个钻孔资料表明,天池火山造锥粗面岩喷发之前存在距今约2Ma和约1Ma左右的更早期的粗面岩喷发过程。造锥阶段碱流质岩浆喷发持续时间可能在距今0.190~0.0192Ma  相似文献   

6.
华北东部海兴一带出露2座第四纪火山,即小山火山和大山火山,并在边庄附近隐伏了火山岩。野外考察和室内分析显示:小山火山为玛珥式火山,喷发方式为射汽岩浆喷发,影响范围仅限于火口附近,喷发物为火山渣、晶屑和火山灰;大山火山早期为爆破式喷发,后有岩浆侵入,喷发强度和规模均不大,产生了火山渣、火山集块岩和致密熔岩颈。边庄隐伏火山岩为气孔状和致密火山岩及火山角砾岩,喷发方式以弱爆破式喷发和熔岩流溢为主,喷发时代为早更新世。小山火山渣和边庄隐伏火山岩成分为玄武质,而大山火山岩Si O2含量低,属于霞石岩。氧化物含量不显示线性关系,说明它们之间不存在岩浆演化关系。3处火山岩均富集轻稀土,边庄隐伏火山岩富大离子亲石元素,无高场强元素Zr、Hf、Ti亏损,大山和小山样品强烈富集Th、U、Nb和Ta,明显负K和Ti。3处火山岩具有不同的岩石学和地球化学特征,具有相对独立的火山结构,虽均可能来自软流圈,但明显经历了不同的岩浆活动过程。  相似文献   

7.
云南腾冲马鞍山最后一次喷发的热释光年龄   总被引:4,自引:0,他引:4  
尹功明  李盛华 《地震研究》2000,23(4):388-391
云南腾冲火山区是我国少数几个近代有火山活动的地区之一,它由多座第四纪火山组成。其中马鞍山是规模较大,可能喷发较晚的一处火山。从马鞍山火山锥附近采集了2个火山岩样品,进行了热释光测年分析。热释光年龄表明马鞍山最后一次大规模的火山喷发发生在全新世,可能距今约2500~3500年。  相似文献   

8.
锡林浩特-阿巴嘎火山群内的玛珥式火山   总被引:4,自引:0,他引:4  
锡林浩特-阿巴嘎火山群位于内蒙古自治区锡林郭勒盟,处于大兴安岭-大同新生代火山喷发带中段。火山群内发育300余座不同类型的第四纪玄武质火山,其中玛珥式火山属首次发现,以阿巴嘎旗东南部的浩特乌拉、西北部的车勒乌拉和额斯格乌拉玛珥式火山最具代表性,其火山规模较大,锥体直径一般为3~4km,大者约6.5km。火山结构较完整,具有相似的双轮山地貌景观和明显的阶段性喷发过程,喷发阶段早期为强烈的射汽-岩浆爆发,晚期均转变为弱岩浆爆发,最后为玄武质熔岩流的溢出。这种喷发序列反映了岩浆与水相互作用以及岩浆上升速度和溢出率变化的过程。火山喷发形成的基浪堆积物覆盖在中更新统河谷砂砾石之上,其中近火口溅落堆积物中上新世砂泥岩"包体"的热释光年龄为(0.112±0.0096)Ma,表明玛珥式火山喷发时代属晚更新世早期。  相似文献   

9.
雷琼地区火山岩的钾-氩同位素年龄测定和古地磁极性研究表明,新生代在该地区的岩浆活动一直很强烈。火山岩的生成年代不晚于中新世晚期,至更新世岩浆活动尤为强烈。 研究也表明中新世晚期以来这里的地球磁场极性变化规律与近期发表的地磁极性年表大体相符,并肯定了数个尚有争议的短期极性事件的存在。年代为0.58±0.13Ma的反极性火山岩的资料肯定了安比拉(Emperor)事件的存在。研究还证实了布容/松山极性时界线之下和哈拉米洛极性亚时之上有一短期的极性事件,其年代约为0.78±0.03Ma.在奥尔都维和哈拉米洛极性亚时之间存在有另一正极性事件,这可能相当于吉尔萨(Gilsa)事件。  相似文献   

10.
雷琼地区火山岩的钾-氩同位素年龄测定和古地磁极性研究表明,新生代在该地区的岩浆活动一直很强烈。火山岩的生成年代不晚于中新世晚期,至更新世岩浆活动尤为强烈。 研究也表明中新世晚期以来这里的地球磁场极性变化规律与近期发表的地磁极性年表大体相符,并肯定了数个尚有争议的短期极性事件的存在。年代为0.58±0.13Ma的反极性火山岩的资料肯定了安比拉(Emperor)事件的存在。研究还证实了布容/松山极性时界线之下和哈拉米洛极性亚时之上有一短期的极性事件,其年代约为0.78±0.03Ma.在奥尔都维和哈拉米洛极性亚时之间存在有另一正极性事件,这可能相当于吉尔萨(Gilsa)事件。  相似文献   

11.
Zhao  Xinwei  Zhou  Jing  Ma  Fang  Ji  Jianqing  Deino  Alan 《中国科学:地球科学(英文版)》2020,63(5):662-673
Reconstruction of Quaternary environments, late Cenozoic geodynamics and evaluation of volcanic hazards, all depend on the precise delineation of eruptive stages. In recent years, laser ~(40)Ar/~(39)Ar dating methods have been widely used for dating young volcanic rocks, given their stable automated testing process, very low background level and high sensitivity, which meet the requirements for precise dating of young samples. This paper applied high-precision laser ~(40)Ar/~(39)Ar dating to the main volcanic units in the Tengchong area and obtained ages in the range of 0.025–5.1 Ma using conventional data processing methods. However, conventional dating highlighted issues related to very low radiogenic ~(40)Ar content, accidental errors and poor data stability, which led to huge age deviations. Moreover, lacking a unified timescale, conventional methods were unable to strictly define the stages of the Tengchong volcanic eruptions, leading to ongoing controversy. In this study, we applied a Gaussian mathematical model to deal with all 378 original ages from 13 samples. An apparent age-probability diagram,consisting of three independent waveforms, have been obtained. The corresponding isochron ages of these three waveforms suggest there were three volcanic eruptive stages, namely during the Pliocene(3.78±0.04 Ma), early Middle Pleistocene(0.63±0.03 Ma) and late Middle Pleistocene to early Late Pleistocene(0.139±0.005 Ma). These results accurately define eruptive stages in the Tengchong area.  相似文献   

12.
Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large, long-lived hydrothermal system ( 1.0 Ma to present). Clay samples came from scientific core hole VC-2B (295°C at 1762 m) which was spudded in the Sulphur Springs thermal area and drilled into the boundary between the central resurgent dome and the western ring-fracture zone. Six illitic clays within Quaternary caldera-fill debris flow, tuffaceous sediment, and ash-flow tuff (48 to 587 m depth) yield ages from 0.35 to 1.09 Ma. Illite from Miocene pre-caldera sandstone (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on illites from altered andesite pebbles within the red beds (1010–1014 m) are 0.95 to 1.06 Ma. Four illite dates on variably altered Precambrian quartz monzonite (1615–1762 m) range from 2.90 to 276 Ma.Post-Valles age illite is not correlated with alteration style (argillic to propylitic). Rather, post-Valles ages are uniformly obtained from illites in highly fractured, intensely altered, caldera-fill rocks and the Permian volcanic clasts. Generally, finer clay fractions from identical samples yield younger ages. Plots of 40Ar/36Ar versus 40K/36Ar and 40Ar* versus 40K for the illites in caldera-fill rocks lie close to a 1-Ma isochron. Most illite dates older than Valles caldera are difficult to interpret because they correspond to the ages of pre-Valles volcanic and hydrothermal episodes in the Jemez volcanic field ( 13 Ma). In addition, older dates may be caused by co-mingling of different illites during sample preparation, or by inherited argon or lost argon in illites from rocks with potentially complex hydrothermal histories. However, the range of ages obtained from illites in Permian sands and pebbles and from Precambrian crystalline rocks indicates that Valles hydrothermal activity is overwhelming illite produced by earlier geologic events.  相似文献   

13.
40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko¯ko Seamounts, the new data indicate that the best age for the bend is 42.0 ± 1.4 m.y.Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain.40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of39Ar from nonretentive montmorillonite clays that have also lost40Ar.  相似文献   

14.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

15.
A new geochronological and geochemical study was carried out to better constrain the petrogenesis and eruptive history of Monte Amiata, a large Pleistocene trachydacitic volcano of Southern Tuscany. Previous studies suggested a magma mixing origin between calc-alkaline silicic melts from the Tuscan Magmatic Province (TMP) and potassic mafic melts like those found in the Roman Magmatic Province (RMP). Two eruptive episodes–the first at ca. 300 kyr, the second at ca. 200 kyr–were distinguished from the few available ages. However, both the involvement of a RMP-like melt as mafic end-member and the timing of volcanic activity remained to be ascertained. The K–Ar ages obtained on plagioclase, sanidine and glass separated from Mt Amiata volcanic rocks demonstrate the sanidine is the most suitable phase for K–Ar dating. Sanidine yields ages of 304–293 kyr for the basal trachydacitic unit (BTC), 298–280 kyr in the domes unit (DLC) and unexpected older ages of 312–308 kyr for the more mafic summit lava unit (OLL). A careful re-examination of the literature ages together with those obtained in this study shows that they tend to a common age of ca. 300 kyr whatever the volcanic unit. We interpret this as a reset of the K–Ar chronometer in response to a consequent recharge of the silicic magma reservoir by hot mafic melts. This recharge most probably triggered the first volcanic eruption of Mt Amiata magmas. In our model, we suppose an initially chemically-stratified magma chamber; the input of deep hot mafic melts reset the crystals clock and probably allowed the eruption of the huge amount of trachydacitic crystal mush. We propose that the controversial BTC unit could have emplaced during a non-explosive eruption if we consider either pre-eruption passive degassing or extrusion of the trachydacites as magmatic foam.First Pb isotopic data of mafic enclaves from the trachydacitic units, together with major and trace elements and new Sr and Nd data support the magma mixing as the dominant process at the origin of the Mt Amiata volcanic rocks. The similar LILE/HFSE ratios evidenced in this contribution between the magmatic enclaves of Mt Amiata and RMP volcanic rocks, together with their comparable Sr, Nd and Pb isotopic compositions, definitively argue for the involvement of a RMP-like melt in the mixing. The Mt Amiata is thus indisputably a hybrid volcano between TMP and RMP in terms of petrogenesis and ages.  相似文献   

16.
Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracontinental volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.  相似文献   

17.
40Ar/39Ar dating results on seven volcanic rocks from four areas of the Deccan Traps, India, suggest that volcanic activity more than 70 Ma ago might have occurred at least in limited areas.In the Igat Puri area, the uppermost flow shows an40Ar/39Ar age of 63 Ma, whereas a lower flow has an age of around 82–84 Ma.40Ar/39Ar ages of samples from the Bombay area also seem to favor the occurrence of volcanic activity more than 70 Ma ago. One rhyolite dyke from the Osam Hill in the Girnar Hill area shows a well-defined plateau age of 68 Ma, whereas two tholeiitic basalts from the Mahabaleshwar area indicate a total40Ar/39Ar age of around 63–64 Ma, though they show the effect of secondary disturbance in the age spectra.The volcanic activity(ies) more than 70 Ma ago may correspond to precursory one(s) for the main volcanic activity around 65 Ma ago in the Deccan Traps.  相似文献   

18.
Mount Sidley is a complex, polygenetic stratovolcano composed primarily of phonolitic and trachytic lavas and subordinate pyroclastic lithologies at the southern extremity of the Executive Committee Range, a linear chain of volcanoes in central Marie Byrd Land, Antarctica. Detailed field investigation coupled with 14 high precision 40Ar/39Ar age determinations reveal a 1.5 million year life span between 5.7 and 4.2 Ma in which three major phonolitic central vent edifices (Byrd, Weiss and Sidley volcanoes) and their calderas were developed (5.7–4.8 Ma). This was followed (4.6–4.5 Ma) by the eruption of trachytic magmas from multiple vent localities further south, and then by small volume benmoreite-mugearite lavas and tephras around 4.4–4.3 Ma at the southern end of Mount Sidley. The final phase of activity was the eruption of basanite cones at approximately 4.2 Ma. The southward migration of volcanic activity was accompanied by distinct changes in magma composition and is best explained by the sequential release of magmas stored within an intricate system of conduits and chambers in the crust by tectonically driven (magma assisted?) fracture propagation. The style of volcanic migration at Mount Sidley is emulated on a larger scale by other volcanoes in the Executive Committee Range, in which progressive southward displacement of volcanic activity corresponds with significant petrological variations between major centers.  相似文献   

19.
Major element chemistry, K/Ar ages and trace element data are reported for volcanic rocks from the Voras volcanic complex of Central Macedonia (Greece). Petrological data show that the Voras volcanic rocks consist essentially of intermediate members of the high-K calc-alkaline and shoshonitic series, the most abundant rock types being high-K andesites and dacites, latites and trachytes. K/Ar ages determined on selected samples show values ranging between 5.0 and 1.8 m.y., indicating that the Voras volcanism was active from Pliocene up to the Lower Pleistocene. The high Th, Hf, Ba and LREE shown by some representative samples together with their strongly fractionated light and heavy REE patterns and the absence of significant negative Eu anomalies indicate a magma genesis by low degrees of partial melting of a source enriched in large ion lithophile elements, leaving a garnet-bearing and plagioclase-free residue. This source is believed to be represented by a mantle garnet peridotite enriched in incompatible elements. The geotectonic significance of the K-rich volcanism of the Voras area is discussed within the general framewoek of the late Tertiary tectonic evolution of the Aegean area and its emplacement is related to the distension tectonic movements which have affected the boundary area between the Macedonian microplate and the European craton since the Neogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号