首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
B. C. Low 《Solar physics》1996,167(1-2):217-265
This review puts together what we have learned about coronal structures and phenomenology to synthesize a physical picture of the corona as a voluminous, thermally and electrically highly-conducting atmosphere responding dynamically to the injection of magnetic flux from below. The synthesis describes complementary roles played by the magnetic heating of the corona, the different types of flares, and the coronal mass ejections as physical processes by which magnetic flux and helicity make their way from below the photosphere into the corona, and, ultimately, into interplanetary space. In these processes, a physically meaningful interplay among dissipative magnetohydrodynamic turbulence, ideal ordered flows, and magnetic helicity determines how and when the rich variety of relatively long-lived coronal structures, spawned by the emerged magnetic flux, will evolve quasi-steadily or erupt with the impressive energies characteristic of flares and coronal mass ejections. Central to this picture is the suggestion, based on recent theoretical and observational works, that the the emerged flux may take the form of a twisted flux rope residing principally in the corona. Such a flux rope is identified with the low-density cavity at the base of a coronal helmet, often but not always encasing a quiescent prominence. The flux rope may either be bodily transported into the corona from below the photosphere, or reform out of a state of flaring turbulence under some suitable constraint of magnetic-helicity conservation. The appeal of this synthesis is its physical simplicity and the manner it relates a large set of diverse phenomena into a self-consistent whole. The implications of this view point are discussed.The topics covered are: the large-scale corona; helmet streamers; quiescent prominences; coronal mass ejections; flares and heating; magnetic reconnection and magnetic helicity; and, the hydromagnetics of magnetic flux emergence.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
RICCA  RENZO L. 《Solar physics》1997,172(1-2):241-248
This paper presents new results concerning evolution and inflexional instability of twisted magnetic flux tubes in the solar corona. Inflexional configurations, attained when the curvature of the tube axis vanishes, are generally present in coronal magnetic structures and are invariably associated with the early stages of kink formation. New equations for the Lorentz force in orthogonal curvilinear coordinates are applied to study the behaviour of twisted flux tubes in presence of inflexion points. We find that inflexional flux tubes are in disequilibrium and evolve spontaneously to inflexion-free configurations, possibly in braid form. These results have important applications for solar coronal structures. First, they prove that the evolution and relaxation of twisted magnetic fields into braid form is a generic feature, confirming the observational evidence of highly twisted and braided structures present in the solar corona. Secondly, they demonstrate that inflexions can trigger kink instabilities, providing a fundamental mechanism for modeling outbreaks of energy into heat, emitted by flares, microflares and mass ejections.  相似文献   

3.
This paper considers the hemispheric pattern of solar filaments using newly developed simulations of the real photospheric and 3D coronal magnetic fields over a six-month period, on a global scale. The magnetic field direction in the simulation is compared directly with the chirality of observed filaments, at their observed locations. In our model the coronal field evolves through a continuous sequence of nonlinear force-free equilibria, in response to the changing photospheric boundary conditions and the emergence of new magnetic flux. In total 119 magnetic bipoles with properties matching observed active regions are inserted. These bipoles emerge twisted and inject magnetic helicity into the solar atmosphere. When we choose the sign of this active-region helicity to match that observed in each hemisphere, the model produces the correct chirality for up to 96% of filaments, including exceptions to the hemispheric pattern. If the emerging bipoles have zero helicity, or helicity of the opposite sign, then this percentage is much reduced. In addition, the simulation produces a higher proportion of filaments with the correct chirality after longer times. This indicates that a key element in the evolution of the coronal field is its long-term memory, and the build-up and transport of helicity from low to high latitudes over many months. It highlights the importance of continuous evolution of the coronal field, rather than independent extrapolations at different times. This has significant consequences for future modelling such as that related to the origin and development of coronal mass ejections.  相似文献   

4.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

5.
The onset stage of coronal mass ejections (CMEs) is difficult to observe and is poorly studied. In spite of their practical importance, methods for CME predictions with sufficient lead times are only in the nascent stages of development. The most probable CME mechanism is a catastrophic loss of equilibrium of a large-scale current system in the corona (a flux rope). A twisted magnetic rope is maintained by the tension of field lines of photospheric sources until parameters of the system reach critical values and the equilibrium is lost. Unfortunately, there is low-density plasma (coronal cavity) in most of the rope volume; thus, it is difficult to observe a rope. However, the lower parts of the helical field lines of a rope are fine traps for the dense cold plasma of prominences. Thus, prominences are the best tracers of flux ropes in the corona. The maximal height up to which the rope is in stable equilibrium can be found by analyzing the distribution of the magnetic field generated by photospheric sources in the corona. Comparing this critical height with the actually observed prominence height, one can estimate the probability of the loss of equilibrium by a magnetic rope with a following eruption of prominences and coronal mass ejections.  相似文献   

6.
We present a new approach to the theory of large-scale solar eruptive phenomena such as coronal mass ejections and two-ribbon flares, in which twisted flux tubes play a crucial role. We show that it is possible to create a highly nonlinear three-dimensional force-free configuration consisting of a twisted magnetic flux rope representing the magnetic structure of a prominence (surrounded by an overlaying, almost potential, arcade) and exhibiting an S-shaped structure, as observed in soft X-ray sigmoid structures. We also show that this magnetic configuration cannot stay in equilibrium and that a considerable amount of magnetic energy is released during its disruption. Unlike most previous models, the amount of magnetic energy stored in the configuration prior to its disruption is so large that it may become comparable to the energy of the open field.  相似文献   

7.
C. Jacobs  S. Poedts 《Solar physics》2012,280(2):389-405
Large-scale solar eruptions, known as coronal mass ejections (CMEs), are regarded as the main drivers of space weather. The exact trigger mechanism of these violent events is still not completely clear; however, the solar magnetic field indisputably plays a crucial role in the onset of CMEs. The strength and morphology of the solar magnetic field are expected to have a decisive effect on CME properties, such as size and speed. This study aims to investigate the evolution of a magnetic configuration when driven by the emergence of new magnetic flux in order to get a better insight into the onset of CMEs and their magnetic structure. The three-dimensional, time-dependent equations for ideal magnetohydrodynamics are numerically solved on a spherical mesh. New flux emergence in a bipolar active region causes destabilisation of the initial stationary structure, finally resulting in an eruption. The initial magnetic topology is suitable for the ??breakout?? CME scenario to work. Although no magnetic flux rope structure is present in the initial condition, highly twisted magnetic field lines are formed during the evolution of the system as a result of internal reconnection due to the interaction of the active region magnetic field with the ambient field. The magnetic energy built up in the system and the final speed of the CME depend on the strength of the overlying magnetic field, the flux emergence rate, and the total amount of emerged flux. The interaction with the global coronal field makes the eruption a large-scale event, involving distant parts of the solar surface.  相似文献   

8.
Dual-filament initiation of a Coronal Mass Ejection: Observations and Model   总被引:1,自引:0,他引:1  
Uralov  A.M.  Lesovoi  S.V.  Zandanov  V.G.  Grechnev  V.V. 《Solar physics》2002,208(1):69-90
We propose a new model for the initiation of solar coronal mass ejections (CMEs) and CME-associated flares. The model is inferred from observations of a quiescent filament eruption in the north-western quadrant of the solar disk on 4 September 2000. The event was observed with the Siberian Solar Radio Telescope (5.7 GHz), the Nobeyama Radioheliograph (17 GHz) and SOHO/EIT and LASCO. Based on the observations, we suggest that the eruption could be caused by the interaction of two dextral filaments. According to our model, these two filaments merge together to form a dual-filament system tending to form a single long filament. This results in a slow upward motion of the dual-filament system. Its upward expansion is prevented by the attachment of the filaments to the photosphere by filament barbs as well as by overlying coronal arcades. The initial upward motion is caused by the backbone magnetic field (first driving factor) which connects the two merging filaments. Its magnetic flux increases slowly due to magnetic reconnection of the cross-interacting legs of these filaments. If a total length of the dual-filament system is large enough, then the filament barbs detach themselves from the solar surface due to magnetic reconnection between the barbs with oppositely directed magnetic fields. The detachment of the filament barbs completes the formation of the eruptive filaments themselves and determines the helicity sign of their magnetic fields. The appearance of a helical magnetic structure creates an additional upward-directed force (second driving factor). A combined action of these two factors causes acceleration of the dual-filament system. If the lifting force of the two factors is sufficient to substantially extend the overlying coronal magnetic arcade, then magnetic reconnection starts below the eruptive filament in accordance with the classical scheme, and the third driving factor comes into play.  相似文献   

9.
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona.Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to coronal heating, coronal seismology, solar flares and coronal mass ejections(CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations and helicity of filaments. With high-resolution and highsensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments.  相似文献   

10.
Observations of the solar corona collected over the past decade are discussed from the point of view of short-term (<1 day) and long-term (>1 year) effects. Various phenomena are described, including coronal mass ejections, shock waves, and magnetic sector structures. It is argued that emerging magnetic flux is probably the prime cause of these phenomena, although the details of the interaction processes in the corona are not fully understood.Short-term changes are caused by the sudden release of energy in the lower corona or chromosphere. The prime cause is thought to be due to the build-up of highly sheared magnetic flux. Theoretical work of late has concentrated on attempting to explain the time-scales of flare events (<10 s) in terms of magnetic reconnection. Other work has concentrated on attempting to explain observed features of coronal mass ejections which last for periods of several hours. Long-term changes last for several years and are characterized by the slow evolution of coronal structures, especially magnetic sectors, which extend into interplanetary space out and beyond the Earth. Recent observations place new restraints on the solar dynamo which is thought to be responsible for the emerging magnetic flux involved in these long-term changes.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

11.
Magnetic flux ropes are characterized by coherently twisted magnetic field lines, which are ubiquitous in magnetized plasmas. As the core structure of various eruptive phenomena in the solar atmosphere, flux ropes hold the key to understanding the physical mechanisms of solar eruptions,which impact the heliosphere and planetary atmospheres. The strongest disturbances in the Earth's space environments are often associated with large-scale flux ropes from the Sun colliding with the Earth's magnetosphere, leading to adverse, sometimes catastrophic, space-weather effects. However, it remains elusive as to how a flux rope forms and evolves toward eruption, and how it is structured and embedded in the ambient field. The present paper addresses these important questions by reviewing current understandings of coronal flux ropes from an observer's perspective, with an emphasis on their structures and nascent evolution toward solar eruptions, as achieved by combining observations of both remote sensing and in-situ detection with modeling and simulation. This paper highlights an initiation mechanism for coronal mass ejections(CMEs) in which plasmoids in current sheets coalesce into a 'seed' flux rope whose subsequent evolution into a CME is consistent with the standard model, thereby bridging the gap between microscale and macroscale dynamics.  相似文献   

12.
张军  汪景 《天文学进展》2001,19(2):146-146
主要介绍晕状日冕物质抛射(halo CMEs)的产生机制,包括向量磁场演化是怎样触发halo CMEa的:halo CME与耀斑,暗条活动的相互关系怎样,是否有规律可循,暗条爆发,耀斑等活动现象是如何相互联系的,halo CME事件是由一个活动区域或一个活动事件驱动物,还是多个活动区或多个活动事件相互作用的结果,给出两个halo CME的日面起源的观测例证,提出相反极笥的磁场对消是CME日面源区磁场演化的主要特征。  相似文献   

13.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

14.
ICME Identification from Solar Wind Ion Measurements   总被引:1,自引:0,他引:1  
Russell  C.T.  Shinde  A.A. 《Solar physics》2003,216(1-2):285-294
Interplanetary coronal mass ejections (ICMEs), the interplanetary counterpart of coronal mass ejections (CMEs), are most commonly identified by their enhanced magnetic field strengths and rotating magnetic field orientation. However, there are other frequent signatures in the plasma. We use a pair of these signatures, a linearly decreasing plasma bulk velocity and a cool (< 20 km s−1) ion thermal speed, to identify candidate ICMEs. Many ICMEs, identified through their magnetic signatures, are also found by their ion signatures alone. However, many are not. These missed ICMEs appear not to be expanding, even when they are accompanied by leading shocks. The ICMEs with both the magnetic and ion signatures appear to be expanding as judged from either set of observations. The most clearly defined ICMEs have transit times from the Sun and growth times to the observed size that are equal. These ropes fit the paradigm of compact magnetic structures arising low in the corona and expanding uniformly in time, as they travel at constant center of mass speed toward 1 AU.  相似文献   

15.
The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main-phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (\(2\pi \) radians of twist), and then main-phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.  相似文献   

16.
Catastrophe of coronal magnetic rope embedded in a partly open multipolar background magnetic field is studied by using a 2-dimensional, 3-component ideal MHD model in spherical coordinates. The background field is composed of three closed bipolar fields of a coronal streamer and an open field with an equatorial current sheet. The magnetic rope lies below the central bipolar field, and it is characterized by its annular and axial magnetic fluxes. For a given annual flux, there is a critical value of the axial flux, and for a given axial flux, there is a critical value of annual flux such that, below the critical value, the magnetic rope is attached to the solar surface and the system stays in equilibrium, but when the critical value is exceeded, the magnetic rope breaks free and erupts upward. This implies that catastrophe can occur in a coronal magnetic rope embedded in a partly open multipolar background magnetic field. Our computation gives a threshold value of magnetic energy that is about 15% greater than the energy of the partly open magnetic field (the central bipolar field open and the fields on either side closed). The excess energy may serve as source for solar explosions such as coronal mass ejections.  相似文献   

17.
宋其武  吴德金 《天文学报》2004,45(4):381-388
由磁绳结构主导、平均尺度约二、三十个小时的行星际磁云是日冕物质抛射在行星际膨胀、传播的体现。最近,Moldwin等人报道在太阳风中还观测到一些尺度在几十分钟的小尺度磁绳结构,并认为太阳风中的磁绳结构在尺度分布上可能具有双峰特征,在全面检视了WIND卫星(1995年-2000年)和ACE卫星(1998年-2000年)的观测资料后,发现了在行星际太阳风中一些尺度为几个小时的中尺度磁绳结构,利用初步整理的其中28个中尺度磁绳结构事件,认为太阳风中的磁绳结构在尺度分布上可能是连续的,这对行星际太阳风中磁绳结构物理起源的研究可能提出重要的物理限制。  相似文献   

18.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   

19.
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME.  相似文献   

20.
Zipper reconnection has been proposed as a mechanism for creating most of the twist in the flux tubes that are present prior to eruptive flares and coronal mass ejections. We have conducted a first numerical experiment on this new regime of reconnection, where two initially untwisted parallel flux tubes are sheared and reconnected to form a large flux rope. We describe the properties of this experiment, including the linkage of magnetic flux between concentrated flux sources at the base of the simulation, the twist of the newly formed flux rope, and the conversion of mutual magnetic helicity in the sheared pre-reconnection state into the self-helicity of the newly formed flux rope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号