首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historical cropland datasets are fundamental for quantifying the effects of human land use activities on climatic change and the carbon cycle. Two representative global land-use datasets, the Global Land Use Database (termed SAGE dataset) and the Historical Database of the Global Environment (termed HYDE dataset) have been established and used widely. Despite improvement of data quality and methodologies for extracting historical land use information, certain dataset limitations exist that need to be quantified and communicated to users so that they can make informed decisions on whether and how these land-use products should be used. The Cropland data of Northeast China (CNEC) is based on calibrated historical data and a multi-sourced data conversion model, and reconstructs cropland cover change in Northeast China over the last 300 years. Using the CNEC as a reference, we evaluated the accuracy of cropland cover for SAGE and HYDE in Northeast China at spatial scales ranging from the entire Northeast China to provinces and even individual raster grid cells. Neither SAGE nor HYDE reflects real historical land reclamation. Cropland areas in SAGE are overestimated by 20.98 times in 1700 to 1.6 times in 1990. Although HYDE is better, there are significant disagreements in cropland area and distribution between HYDE and CNEC, especially in the 18th and 19th centuries. The proportion of total grid cells whose relative error was greater than 100% was 63.55% in 1700 and 53.27% in 1780. Global cropland dataset errors over Northeast China originate mainly from both the reverse calculation method for historical cropland data based on modern spatial patterns, and modern land-use outputs from satellite data.  相似文献   

2.
This study aims to quantify the contribution of land use/cover change (LUCC) during the last three decades to climate change conditions in eastern China. The effects of farmland expansion in Northeast China, grassland degradation in Northwest China, and deforestation in South China were simulated using the Weather Research and Forecasting (WRF) model in addition to the latest actual land cover datasets. The simulated results show that when forestland is converted to farmland, the air temperature decreased owing to an increase in surface albedo in Northeast China. The climatic effect of grassland degradation on the Loess Plateau was insignificant because of the negligible difference in albedo between grassland and cropland. In South China, deforestation generally led to a decrease in temperature. Furthermore, the temperature decrease caused by the increase in albedo counteracted the warming effects of the evapotranspiration decrease, so the summer temperature change was not significant in South China. Excluding the effects of urbanization in the North China Plain, the LUCC effects across the entire region of East China presented an overall cooling trend. However, the variation in temperature scale and magnitude was less in summer than that in winter. This result is due mainly to the cooling caused by the increase in albedo offset partly by the increase in temperature caused by the decrease in evaporation in summer. Summer precipitation showed a trend of increasing–decreasing–increasing from southeast to northwest after LUCC, which was induced mainly by the decrease in surface roughness and cyclone circulations appearing northwest of Northeast China, in the middle of the Loess Plateau, and in Yunnan province at 700 hPa after forests were converted into farmland. All results will be instructive for understanding the influence of LUCC on regional climate and future land planning in practice.  相似文献   

3.
利用中国自主研制的全球首套30 m分辨率GlobeLand30地表覆盖产品调查全国定点形变台站周边5 km范围内的土地覆盖类型分布.应用地类面积/变化率、类型转入转出率等指标分析研究区各类型的转移规律,并辅以MODIS土地覆盖年数据集从全国和分区角度揭示2001—2018年间各土地类型时空变化格局,最后以垂直摆倾斜观测...  相似文献   

4.
Pinyon‐juniper (PJ) cover has increased up to 10‐fold in many parts of the western U.S. in the last 140+ years. The impacts of these changes on streamflows are unclear and may vary depending on the intra‐annual distribution and amount of precipitation. Given the importance of streamflow in the western U.S., it is important to understand how shifts in PJ woodland cover may produce changes in streamflow across the region's diverse hydroclimates. To this end, we simulated the land surface water balance with contrasting woodland and grassland cover with the Hydrologiska Byråns Vattenbalansavdelning (HBV) model at a 4‐km resolution across the distribution of PJ woodlands in the western U.S. We used shifts in evapotranspiration (ET) between woodland and grassland cover as a proxy for potential changes in streamflows. Comparison of HBV model results with paired catchment studies indicated the model reasonably simulated annual decreases in ET with changes from woodland to grassland cover. For the northern and western ecoregions of the PJ distribution in the western U.S. where precipitation predominantly occurs in the winter, HBV simulated a 25 mm (37%) annual decrease in ET with conversion to grassland from woodland. Conversely, in southern ecoregions of PJ distribution with prominent summer monsoons, annual differences in ET were only 6 mm (19%). Our results suggest that only 29% of the PJ distribution, compared to an estimated 45% based on precipitation amount alone, has the potential for meaningful increases in streamflow with land cover change from woodland to grassland.  相似文献   

5.
Assessments of the impacts of land use and land cover changes(LUCC) on the terrestrial carbon budget, atmospheric CO2 concentration, and CO2-related climatic change are important to understand the environmental effects of LUCC and provide information about the effects of historical carbon emissions. Using regional land cover reconstructions from historical records, with a bookkeeping model, we estimated the carbon sink changes caused by historical cropland expansion in Northeast China during the past 300 years. The conclusions are as follows:(1) There was a dramatic land reclamation of cropland during the past 300 years in Northeast China. Approximately 26% of the natural land was cultivated, and 38% of the grassland and 20% of the forest and shrubland were converted to cropland.(2) The carbon emission induced by cropland expansion between 1683 and 1980 was 1.06–2.55 Pg C, and the estimation from the moderate scenario was 1.45 Pg C. The carbon emissions of the soil carbon pool was larger than that from the vegetation carbon pool and comprised more than 2/3 of the total carbon emissions.(3) The carbon emissions of the three provinces in Northeast China were different. Heilongjiang Province had the largest carbon emissions, and Jilin Province had the second largest emissions.(4) The primary source of carbon emissions was forest reclamation(taking 60% of the total emissions in the moderate scenario), the secondary source was grassland cultivation(taking 27%), and the tertiary sources were shrubland and wetland reclamation(taking 13%). Examination on the data accuracy revealed that the high-resolution regional land cover data allowed the carbon budget to be evaluated at the county level and improved the precision of the results. The carbon emission estimation in this study was lower than those in previous studies because of the improved land use data quality and various types of land use change considered.  相似文献   

6.
This study investigated the influence of climatic variables on the spatio-temporal variation of vegetation growth using normalized difference vegetation index (NDVI) data and climate data from 2000 to 2013 in the Northeast China Transect. Partial correlation and linear regression methods were applied to quantify the response of the growing season NDVI to climatic variables. Gradient analysis was used to investigate how the response changes across the precipitation gradient over the transect. The results show that, at the spatial scale, NDVI increases with precipitation in grassland, and the spatial sensitivity is 0.001/mm. At the temporal scale, grassland NDVI is less correlated with precipitation in wet areas where precipitation exceeds a threshold of 250 mm. The temporal sensitivity of grassland NDVI to precipitation is 0.0003–0.0006/mm. Positive correlations between NDVI and temperature dominate in forest areas, and forest NDVI is sensitive to temperature by 0.06–0.12/°C.  相似文献   

7.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The knowledge of the contribution of sediment sources to river networks is a prerequisite to understand the impact of land use change on sediment yield. We calculated the relative contributions of sediment sources in two paired catchments, one with commercial eucalyptus plantations (0.83 km2) and the other with grassland used for livestock farming (1.10 km2), located in the Brazilian Pampa biome, using different combinations of conventional [geochemical (G), radionuclide (R) and stable isotopes and organic matter properties (S)] and alternative tracer properties [spectrocolorimetric visible-based-colour parameters (V)]. Potential sediment sources evaluated were stream channel, natural grassland and oat pasture fields in the grassland catchment, and stream channel, unpaved roads and eucalyptus plantation in the eucalyptus catchment. The results show that the best combination of tracers to discriminate the potential sources was using GSRV tracers in the grassland catchment, and using GSRV, GSV and GS tracers in the eucalyptus catchment. In all these cases, samples were 100% correctly classified in their respective groups. Considering the best tracers results (GSRV) in both catchments, the sediment source contributions estimated in the catchment with eucalyptus plantations was 63, 30 and 7% for stream channel, eucalyptus stands and unpaved roads, respectively. In the grassland catchment, the source contributions to sediment were 84, 14 and 2% for natural grassland, stream channel and oats pasture fields, respectively. The combination of these source apportionment results with the annual sediment loads monitored during a 3-year period demonstrates that commercial eucalyptus plantations supplied approximately 10 times less sediment (0.1 ton ha−1 year−1) than the traditional land uses in this region, that is, 1.0 ton ha−1 year−1 from grassland and 0.3 ton ha−1 year−1 from oats pasture fields. These results demonstrate the potential of combining conventional and alternative approaches to trace sediment sources originating from different land uses in this region. Furthermore, they show that well-managed forest plantations may be less sensitive to erosion than grassland used for intensive livestock farming, which should be taken into account to promote the sustainable use of land in this region of South America.  相似文献   

9.
Methodology for credibility assessment of historical global LUCC datasets   总被引:1,自引:0,他引:1  
Fang  Xiuqi  Zhao  Wanyi  Zhang  Chengpeng  Zhang  Diyang  Wei  Xueqiong  Qiu  Weili  Ye  Yu 《中国科学:地球科学(英文版)》2020,63(7):1013-1025
Land use-induced land cover change(LUCC) is an important anthropogenic driving force of global change that has influenced, and is still influencing, many aspects of regional and global environments. Accurate historical global land use/cover datasets are essential for a better understanding of the impacts of LUCC on global change. However, there are not only evident inconsistencies in current historical global land use/cover datasets, but inaccuracies in the data in these global dataset revealed by historical record-based reconstructed regional data throughout the world. A focus in historical LUCC and global change research relates to how the accuracy of historical global land cover datasets can be improved. A methodology for assessing the credibility of existing historical global land cover datasets that addresses temporal as well as spatial changes in the amount and distribution of land cover is therefore needed. Theoretically, the credibility of a global land cover dataset could be assessed by comparing similarities or differences in the data according to actual land cover data(the "true value"). However, it is extremely difficult to obtain historical evidence for assessing the credibility of historical global land cover datasets, which cannot be verified through field sampling like contemporary global land cover datasets. We proposed a methodological framework for assessing the credibility of global land cover datasets. Considering the types and characteristics of the available evidence used for assessments,we outlined four methodological approaches:(1) accuracy assessment based on regional quantitative reconstructed land cover data,(2) rationality assessment based on regional historical facts,(3) rationality assessment based on expertise, and(4) likelihood assessment based on the consistency of multiple datasets. These methods were illustrated through five case studies of credibility assessments of historical cropland cover data. This framework can also be applied in assessments of other land cover types, such as forest and grassland.  相似文献   

10.
Study on runoff variations and responses can lay a foundation for flood control, water allocation and integrated river basin management. This study applied the Soil and Water Assessment Tool model to simulate the effects of land use on annual and monthly runoff in the Middle and Upstream Reaches of Taoerhe River basin, Northeast China, under the wet, average and dry climate conditions through scenario analysis. The results showed that from the early 1970s to 2000, land use change with an increase in farmland (17.0%) and decreases in forest (10.6%), grassland (4.6%) and water body (3.1%) caused increases in annual and monthly runoff. This effect was more distinct in the wet season or in the wet year, suggesting that land use change from the early 1970s to 2000 may increase the flood potential in the wet season. Increases in precipitation and air temperature from the average to wet year led to annual and monthly (March and from June to December) runoff increases, while a decrease in precipitation and an increase in air temperature from the average to dry year induced decreases in annual and monthly (all months except March) runoff, and moreover, these effects were more remarkable in the wet season than those in the dry season. Due to the integrated effects of changing land use and climate conditions, the annual runoff increased (decreased) by 70.1 mm (25.2 mm) or 197.4% (71.0%) from the average to wet (dry) year. In conclusion, climate conditions, especially precipitation, played an important role in runoff variations while land use change was secondary over the study area, and furthermore, the effects of changes in land use and/or climate conditions on monthly runoff were larger in the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The relationship among the population, economy and water resources is complex, and the contradictions and conflicts will appear and aggravate with the rapid development of economy and society in Northeast China. Based on the statistical analysis of the available data, this paper depicted the static distribution characteristics of the population, economy and water resources of Northeast China in 2011. It was found that the spatial distribution of the population, economy and water resources was unbalanced in Northeast China. The water resources mismatched with the population and economy. The population and economy were relatively dense and developed in the southwestern part of Northeast China respectively, while the water resources was relatively scarce. However, the situations in the northern part of Northeast China were opposite to those in the southwestern part. The population-economy inconsistence indexes of the cities in northern part of Northeast China showed a significant trend of spatial aggregation and heterogeneity. The cities with lower (<1.5) and higher (>1) inconsistence indexes all faced the problem of water resources shortage. Applying geometric gravity center method and grey correlation model, the result indicated that there was relatively high spatial relevance and the relative deviation among the spatial dynamic distributions of the population, economy and water resources was large. The gravity centers of economy and per capita average annual total water resources moved westward, while the gravity center of population gravity center moved eastward in the period of 1997–2011 in Northeast China. It must be noted that, the migration trend of the economy gravity center was more significant than those of the population and water resources.  相似文献   

12.
The East River in South China plays a key role in the socio-economic development in the region and surrounding areas. Adequate understanding of the hydrologic response to land use change is crucial to develop sustainable water resources management strategies in the region. The present study makes an attempt to evaluate the possible impacts of land use change on hydrologic response using a numerical model and corresponding available vegetation datasets. The variable infiltration capacity model is applied to simulate runoff responses to several land use scenarios within the basin (e.g., afforestation, deforestation, and reduction in farmland area) for the period 1952–2000. The results indicate that annual runoff is reduced by 3.5 % (32.3 mm) when 25 % of the current grassland area (including grasslands and wooded grasslands, with 46.8 % of total vegetation cover) is converted to forestland. Afforestation results in reduction in the monthly flow volume, peak flow, and low flow, but with significantly greater reduction in low flow for the basin. The simulated annual runoff increases by about 1.4 % (12.6 mm) in the deforestation scenario by changing forestland (including deciduous broadleaf, evergreen needleleaf, and broadleaf, with 15.6 % of total vegetation cover) to grassland area. Increase in seasonal runoff occurs mainly in autumn for converting cropland to bare soil.  相似文献   

13.
Some 60% of the agricultural land in the UK is grassland. This is mostly located in the wetter uplands of the west and north, with the majority intensively managed as permanent pasture. Despite its extent, there is a lack of knowledge regarding how agricultural practices have altered the hydrological behaviour of the underlying soils relative to the adjacent moorland covered by semi-natural grassland. Near-surface soil moisture content is an expression of the changes that have taken place and is critical in the generation of flood-producing overland flows. This study aims to develop a pioneering paired-plot approach, producing 1,536 moisture measurements at each of the monitoring dates throughout the studied year, that were subsequently analysed by a comparison of frequency distributions, visual cum geostatistical investigation of spatial patterns and mixed-effects regression modelling. The analysis demonstrated that the practices taking place in the pasture (ploughing, re-seeding and drainage) reduced the natural diversity in moisture patterns. Compared to adjacent moorland, the topsoil dried much faster in spring with the effects requiring offset with moisture from slurry applications in summer. With the onset of autumn rains, these applications then made the topsoil wetter than the moorland, heightening the likelihood of flood-producing overland flow. During the sampling within one such storm event, the adjacent moorland was almost as wet as the pasture with both visibly generating overland flow. These contrasts in soil moisture were statistically significant throughout. Further, they highlight the need to scale-up the monitoring with numerous plot pairs to see if the observed highly dynamic, contrasting behaviour is present at the landscape scale. Such research is fundamental to designing appropriate agricultural interventions to deliver sustainable sward production for livestock or methods of mitigating overland-flow incidence that would otherwise heighten flood risk or threaten water quality in rivers.  相似文献   

14.
Downscaling methods assist decision makers in coping with the uncertainty regarding sustainable local area developments. In particular, they allow investigating local heterogeneities regarding water, food, energy, and environment consistently with global, national, and sub-national drivers and trends. In this paper, we develop a conceptual framework that integrates a partial equilibrium Global Biosphere Management Model (GLOBIOM) with a dynamic cross-entropy downscaling model to derive spatially explicit projections of land uses at 1-km spatial resolution from 2010 to 2050 relying on aggregate land demand projections. The fusion of the two models is applied in a case study in Heihe River Basin to analyze the extent of potential cropland, grassland, and unused land transformations, which may exacerbate already extensive water consumption caused by rapid expansion of irrigated agriculture in the case study region. The outcomes are illustrated for two Shared Socioeconomic Pathway scenarios. The kappa coefficients show that the downscaling results are in agreement with the land use and land cover map of the Heihe River Basin, which indicates that the proposed approach produces realistic local land use projections. The downscaling results show that under both SSP scenarios the cropland area is expected to increase from 2010 to 2050, while the grassland area is projected to increase sharply from 2010 to 2030 and then gradually come to a standstill after 2030. The results can be used as an input for planning sustainable land and water management in the study area, and the conceptual framework provides a general approach to creating high-resolution land-use datasets.  相似文献   

15.
Cropland cover change in Northeast China during the past 300 years   总被引:15,自引:0,他引:15  
Land use/cover change induced by human activities has emerged as a “global” phenomenon with Earth system consequences. Northeast China is an area where the largest land cultivation activities by migrants have happened in China during the past 300 years. In this paper, methods including documentary data calibration and multi-sourced data conversion model are used to reconstruct historical cropland cover change in Northeast China during the past 300 years. It is concluded that human beings have remarkably changed the natural landscape of the region by land cultivation in the past 300 years. Cropland area has increased almost exponentially during the past 300 years, especially during the past 100 years when the ratio of cropland cover changed from 10% to 20%. Until the middle of the 19th century, the agricultural area was still mainly restricted in Liaoning Province. From the late 19th century to the early 20th century, dramatic changes took place when the northern boundary of cultivation had extended to the middle of Heilongjiang Province. During the 20th century, three agricultural regions with high ratio of cropland cover were formed after the two phases of spatial expansion of cropland area in 1900s–1930s and 1950s–1980s. Since 1930s–1940s, the expansion of new cultivated area have invaded the forest lands especially in Jilin and Heilongjiang Provinces. Supported by National Natural Science Foundation of China (Grant No. 40571165) and Innovation Foundation of Chinese Academy of Sciences (Grant No. KZCX2-YW-315)  相似文献   

16.
This study investigates reference evapotranspiration (ET0) trends in China from 1960 to 2012 based on the Penman–Monteith equation and gridded meteorological measurements. Under the combined impacts of factors influencing ET0 (i.e., net radiation [RN], mean temperature [TAVE], vapour pressure deficit [VPD], and wind speed [WND]), both seasonal and annual ET0 for the whole China and more than half of the grids decreased over the past 53 years. The attribution analyses suggest that for the whole China, the WND is responsible for annual and seasonal ET0 decreases (excluding summer, where RN is responsible). Across China, the annual cause of WND with the largest spatial extent (43.1% of grids) mainly derives from north of the Changjiang River Basin (CJRB), whereas VPD (RN) as a cause is dispersedly distributed (within and to the south of the CJRB). In summer, RN is dominant in more than half of the grids, but the dominance of VPD and WND accounts for approximately 90% of grids during the remaining seasons. Finally, the correlation coefficients between ET0 and the Atlantic Oscillation (AO), North AO, Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) indices with different lead times are calculated. For the whole China, annual and seasonal ET0 always significantly correlate with these indices (excluding the IOD) but with varied lead times. Additionally, near half of the grids show significant and maximum (i.e., the largest one between ET0 and a certain index with a lead time of 0–3 seasons) correlation coefficients of ET0 with PDO in spring and summer, ENSO in autumn, and AO in winter. This study is not only significant for understanding ET0 changes, but it also provides preliminary and fundamental reference information for ET0 prediction.  相似文献   

17.
The conversion of forests into agriculture has been identified as a key process for stream homogenization. However, the effects of this conversion can be scale-dependent. In this context, our aim was to identify the influence of different land uses at different spatial scales (catchment, drainage network and local) on instream features in agricultural streams. We defined six classes of land use: native forest, reforestation, herbaceous and shrubs, pasture, sugarcane and other categories. We obtained 22 variables related to instream, riparian area, stream morphology and water physicochemical characteristics in 86 stream reaches. To identify and isolate the effect of different land uses at different spatial scales on instream features, we performed a partial redundancy analysis (p-RDA). Different land uses and scales influenced instream features and defined two stream groups: (i) homogeneous streams with a higher proportion of sand substrate and instream grasses that were associated with the proportion of herbaceous vegetation at the local scale and with pasture at all scales and (ii) heterogeneous streams with a higher physical habitat integrity associated with the proportion of forest and sugarcane at the local and catchment scales. Land use at the catchment scale affected the physicochemical water properties and stream morphology, whereas stream physical habitat (i.e., substrate, instream cover, marginal vegetation and stream physical habitat condition) was mainly influenced by land use at the local scale (i.e., 150 m radius). Pure catchment, drainage network and local land uses explained 9%, 7% and 4%, respectively, of the total variation of instream features. Thus, to be most effective, stream conservation and restoration efforts should not be limited to only one scale.  相似文献   

18.
Aerial photographs taken in 1978 and 1987, Landsat TM images in 1998 as well as soil, hydrology and socio-economic data for the oases in Sangong River Watershed were processed by Remote Sensing (RS) and Geographic Information System (GIS). There are two typical agricultural land uses in oases, Farm-based Land Use with large-scale intensified agricultural activities (FLU) and Household Responsibility-based Land Use with small-scale activities (HRLU). The Index Model of Land Use/Land Cover Change (LUCC), Weighted Index Sum (WIS) and logistic stepwise regression model were established to contrast the two typical LUCC processes and their driving forces. The land use patterns were dominated by cropland and grassland for the entire region, and cropland, residential and industrial land were increasing stably. In the HRLU areas, woodland and grassland declined dramatically, but in the FLU areas, grassland decreased only by 12.0%, whereas woodland increased by 13.7%. LUCC was stronger in the earlier stage (1978–1987) than in the later stage (1987–1998) for the entire region. LUCC was more intense in the HRLU areas than in the FLU areas during the entire period (1978–1998). Policy was a key factor in the land use change, and water resources were a precondition in land use. Under the control of policy and water resources, the main human driving factors included population and economy, and the main natural restrictions were soil fertility and groundwater depth. Human driving factors controlled the land change in the HRLU areas, but natural restriction factors dominated in the FLU areas. In the mean time, intensification of LUCC in the region had some spatiotemporal implications with a fluctuation of impact factors.  相似文献   

19.
Ecosystem services evaluation aims at understanding the status of ecosystem services on different spatial and temporal scale. In this paper, we selected the middle reach of the Heihe River Basin (HRB), which is the second largest inland river basin in China, as one of the typical area to estimate the ecosystem services values (ESVs) corresponding to the land use changes. Based on the land use data and ecosystem service value coefficients, the total ecosystem services values (TESVs) of the middle reach of the HBR are quantitatively calculated, which were 9.244 × 108, 9.099 × 108, 9.131 × 108 and 9.146 × 108 USD in 1988, 2000, 2005 and 2008 respectively. During 1988–2008, the decrease of grassland, forest land, water area and unused land contributed 148.94%, 57.85%, 87.87% and 16.42% respectively to the net loss of TESVs, while the dramatic increase of cultivated land improved the TESVs with contribution of −211.08% to the net loss of TESVs. Expansion of cultivated land, which especially caused the loss of grassland and forest land, directly exerted negative impacts on the provision of ecosystem services in the study area. The findings of this research indicated that land use change was an important form of human activities, which had a strong impact on ecosystem services.  相似文献   

20.
Zahra Paydar  John Gallant 《水文研究》2008,22(13):2094-2104
A new modelling framework capable of incorporating detailed one‐dimensional models in a catchment context is presented which can be used to asses the hydrological implications (recharge, discharge, salt movement) of different land uses on different parts of the catchment. The modelling framework incorporates farming systems models and, thus, simulates crop and pasture production, whilst also accounting for lateral fluxes of water (surface and subsurface) and groundwater recharge and discharge. The framework was applied to Simmons Creek catchment, a subcatchment of the Billabong Creek in southern New South Wales, comprising gentle uplands and substantial low‐relief areas containing swamps. An integrated approach incorporating soil, hydrology, hydrogeology, and terrain analysis resulted in interpretation of landscape function and the necessary parameterization of the modelling framework. Current land use (crop rotation and pasture) and an alternative land use (10% trees on uphill units and pasture in the lower lying lands) were simulated to compare the relative contribution of parts of the catchment with total recharge. Comparison between current and alternative land use over 44 years of simulations indicated a decrease of mean annual drainage from 39 to 29 mm year?1 and an average reduction of the groundwater level of about 0·4 m. A more substantial decrease in water‐table depth would require targeted tree planting over larger areas. This can be investigated further with the spatial framework. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号