首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q 10) were 2.94 and 2.49 in years 2002–2003 and 2003–2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be ex-pressed by a rectangular hyperbolic function. Average A max and α for maize were more than those for wheat. The values of α increased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (R ec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was ?10.20 and ?12.50 gC·m?2?d?1 in 2003 and 2004, for the maize field, respectively, and ?8.19 and ?9.50 gC?m?2·d?1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. R ec reached its annual maximum in July when R ec and GPP contributed to NEE equally. NEE was dominated by R ec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was ?77.6 and ?152.2 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively, and ?120.1 and ?165.6 gC·m?2·a?1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual ?197.6 and ?317.9 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

2.
Non-dispersive infrared(NDIR) and cavity ring-down spectroscopy(CRDS) CO_2 analyzers use 12CO_2 isotopologue absorption lines and are insensitive to all or part of other CO_2-related isotopologues. This may produce biases in CO_2 mole fraction measurements of a sample if its carbon isotopic composition deviates from that of the standard gases being used. To evaluate and compare the effects of carbon isotopic composition on NDIR and CRDS CO_2 analyzers, we prepared three test sample air cylinders with varying carbon isotopic abundances and calibrated them against five standard cylinders with ambient carbon isotopic composition using CRDS and NDIR systems. We found that the CO_2 mole fractions of the sample cylinders measured by G1301(CRDS) were in good agreement with those measured by Lo Flo(NDIR). The CO_2 values measured by both instruments were higher than that of a CO_2 isotope measured by G2201i(CRDS) analyzer for a test cylinder with depleted carbon isotopic composition δ~(13)C =-36.828‰, whereas no obvious difference was found for other two test cylinders with δ~(13)C=-8.630‰ and δ~(13)C=-15.380‰, respectively. According to the theoretical and experimental results, we concluded that the total CO_2 mole fractions of samples with depleted isotopic compositions can be corrected on the basis of their 12CO_2 values calibrated by standard gases using Lo Flo and G1301 if the δ~(13)C and δ18O values are known.  相似文献   

3.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

4.
According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression, accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness (C1/C1–4) at the middle and northern parts of the depression and low one towards east and west sides and southern part. The carbon isotopes of methane and its homologues are relatively enriched in 13C, and the distributive range of δ 13C1, δ 13C2 and δ 13C3 is ?32‰–?36‰, ?22‰–?24‰ and ?20‰–?22‰, respectively. In general, the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers. The δ 13 \(C_{CO_2 } \) value is less than ?10‰ in the Kuqa depression, indicating its organogenic origin. The distributive range of 3He/4He ratio is within n × 10?8 and a decrease in 3He/4He ratio from north to south in the depression is observed. Based on the geochemical parameters of natural gas above, natural gas in the Kuqa depression is of characteristics of coal-type gas origin. The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type, multistages accumulation of natural gas under high-temperature and over-pressure conditions, and sufficiency and diffusion of natural gas.  相似文献   

5.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol?1·m?2·s?1) flux data during windy conditions (u* > 0.2 m·s?1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol?1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m?2·s?1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m?2mon?1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as ?43.2±29.6 gC·m?2·mon?1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as ?563.0 and ?441.2 gC·m?2·a?1 respectively, accounting for about 32% of GPP.  相似文献   

6.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

7.
An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux from July to October, 2003. The canopy quantum yield (α) of alpine meadow was calculated by the linear function between the net ecosystem carbon dioxide exchange (NEE) and the photosynthetic active radiation (PAR) under low light, and how it was influenced by the temperature was also discussed. Results showed that the canopy α decreased almost linearly with temperature, with the decrease in every 1 °C increase of temperature similar to those measured on leaf level of C3 plant. At the beginning, the decrease of canopy α with temperature was 0.0005 μmol CO2·μmol?1 PAR; while it increased to 0.0008 μmol CO2·μmol?1 PAR in September, showing a rising trend with plant growing stages. Compared with the canopy α calculated with rectangular hyperbola function, the value in the paper was lower. However, the method advanced here has the advantages in examining the relationship between α and the key environmental factors, such as temperature.  相似文献   

8.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003–2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (F GEP) and ecosystem respiration (R eco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting F GEP and R eco in 2003, whereas soil moisture imposed a significant influence on both R eco and F GEP in 2004. Under wet conditions, R eco showed an exponentially increasing trend with temperature (Q 10 = 2.0), but an apparent reduction in the value of R eco and its temperature sensitivity were observed during the periods of water stress (Q 10=1.6). Both heat and water stress can cause decrease in F GEP. The seasonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m?2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

9.
The light hydrocarbon composition of 209 natural gas samples and individual light hydrocarbon carbon isotopes of 53 natural gas samples from typical humic-sourced gas and sapropelic-sourced gas in the four basins of China have been determined and analyzed. Some identification parameters for humic-sourced gas and sapropelic-sourced gas are proposed or corrected. The differences of compound-specific δ 13C value of individual light hydrocarbon between humic-sourced gas and sapropelic-sourced gas have been founded. The humic-sourced gas has the distribution of δ 13Cbenzene> ?24‰, δ 13Ctoluene >?23‰, δ 13Ccyclohexane > ?24‰ and δ 13Cmethyl cyclohexane> ?24‰, while the sapropelic-sourced gas has the distribution of δ 13Cbenzene <?24‰, δ 13Ctoluene< ?24‰, δ 13Ccyclohexane< ?24‰ and δ 13Cmethyl cyclohexane< ?24‰. Among the components of C7 light hydrocarbon compound, such as normal heptane (nC7), methyl cyclohexane (MCH) and dimethyl cyclopentane (ΣDMCP), etc, relative contents of nC7 and MCH are influenced mainly by the source organic matter type of natural gas. Therefore, it is suggested that the gas with relative content of nC7 of more than 30% and relative content of MCH of less than 70% is sapropelic-sourced gas, while gas with relative content of nC7 of less than 35% and relative content of MCH of more than 50% is humic-sourced gas. Among components of C5–7 aliphatics, the gas with relative content of C5–7 normal alkane of more than 30% is sapropelic-sourced gas, while the gas with relative content of C5–7 normal alkane of less than 30% is humic-sourced gas. These paremeters have been suggested to identify humic-sourced gas and sapropelic-sourced gas.  相似文献   

10.
Lower Cretaceous C-isotope records show intermittent negative/positive spikes, and consistent patterns of coeval chemostratigraphic curves thus document shifts that signal simultaneous responses of temporal changes in the global carbon reservoir. The standard pattern registered by the δ 13Corg and δ 13Ccarb in Lower Aptian sediments includes distinct isotope segments C1 to C8 (Menegatti et al., 1998). In the El Pui section, Organyà Basin, Spain, C-isotope segment C2 is the longest interval preceding segments C3–C6 associated with oceanic anoxic event 1a (OAE 1a), and reveals a distinct negative shift of ~1.8‰ to ~2.23‰ defining the C-isotope pattern within that interval. Total inorganic carbon (TIC), total organic carbon (TOC), δ 13Corg, microfacies, n-alkanes show no difference before, during, or after the negative inflection. The biomarkers indicate that organic matter (OM) mainly originates from algal/microbial sources because short-chain length homologues (≤nC19) dominate. nC20 through nC25 indicate some contribution from aquatic vegetation, but little from higher plants (>nC25), as also suggested by the terrestrial/aquatic ratio of n-alkanes or (TAR) = [(nC27+nC29+nC31)/(nC15+nC17+nC19)] (averages 0.085). We suggest that conjoint pulses of contemporaneous LIPs (Ontong Java) and massive explosive volcanism in northeast Asia, the Songliao Basin (SB-V), best conform to plausible causes of the negative intra-C2 carbon isotopic excursion (CIE) at that time. Because of its apparent common occurrence the intra-C2 inflection could be a useful marker harbinger to the more pronounced CIE C3, the hallmark of OAE1a.  相似文献   

11.
The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than ?20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.  相似文献   

12.
Eddy covariance technique was used to measure carbon flux during two growing seasons in 2003 and 2004 over typical steppe in the Inner Mongolia Plateau, China. The results showed that there were two different CO2 flux diurnal patterns at the grassland ecosystem. One had a dual peak in diurnal course of CO2 fluxes with a depression of CO2 flux after noon, and the other had a single peak. In 2003, the maximum diurnal uptake and emitting value of CO2 were ?7.4 and 5.4 g·m?2·d?1 respectively and both occurred in July. While in 2004, the maximum diurnal uptake and release of CO2 were ?12.8 and 5.8 g·m?2·d?1 and occurred both in August. The grassland fixed 294.66 and 467.46 g CO2·m?2 in 2003 and 2004, and released 333.14 and 437.17 g CO2·m?2 in 2003 and 2004, respectively from May to September. Water availability and photosynthetic active radiation (PAR) are two important factors of controlling CO2 flux. Consecutive precipitation can cause reduction in the ability of ecosystem carbon exchange. Under favorable soil water conditions, daytime CO2 flux is dependent on PAR. CO2 flux, under soil water stress conditions, is obviously less than those under favorable soil water conditions, and there is a light saturation phenomena at PAR=1200 μmol·m?2·s?1. Soil respiration was temperature dependent when there was no soil water stress; otherwise, this response became accumulatively decoupled from soil temperature.  相似文献   

13.
The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli (K sat and K satμ), lambda–mu–rho method (λρ and μρ), P-to-S-wave velocity ratio (V P/V S), and Poisson’s ratio (σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K satμ, EEI, V P/V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.  相似文献   

14.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

15.
The compound-specific stable carbon isotope compositions(δ~(13)C) of leaf wax n-alkanes from two short sediment cores recovered off the Pearl River estuary(PRE) were analyzed to check for their capability of indicating decadal scale catchment environmental change. Sedimentary long-chain n-alkanes exhibited an odd-over-even predominance, with a maximum at n-C_(29) or n-C_(31), indicating their leaf wax origin was from vascular plants. The δ~(13)C values of C_(29) and C_(31) n-alkane in all the sediment samples were in the range of -28.8‰ to -31.2‰, consistent with the C_3 plant-dominated vegetation in the Pearl River catchments. The time series of δ~(13)C records from the two cores were comparable and displayed a decreasing trend from the early 20 th century to the end of the 1970s, followed by a reversal in that change leading to continued increase for ca. 15 years. After being corrected for the effect of atmospheric CO_2 rise and δ~(13)C_(atm) decline, the δ~(13)C_(29) records largely retained their raw changing pattern; the post-1980 increase being more conspicuous. The slightly decreasing trend in corrected δ~(13)C records before around 1980 may have been caused by an increase in precipitation, whereas the subsequent increase of δ~(13)C is likely associated with the observed dry climate and/or intensive anthropogenic deforestation. Our results thus demonstrate that leaf wax n-alkanes buried in the sediments off the PRE may well reflect change in the regional climate and/or human activity in the river catchments over the past century.  相似文献   

16.
Gega lake, in southeastern Tibet, was formed by the blocking of Yarlung Tsangpo gorge by a glacier and is a well-known example of geomorphological damming. However, the evolution of the damming process at the site is still not understood in detail. Here, we use measurements of multiple magnetic parameters of the sediments from the Yusong (YS) 3 section, which is well-dated by optically stimulated luminescence, to provide a detailed history of the late stage of Gega dammed lake since 17.0 ka. Low-frequency field magnetic susceptibility (χlf) increases upwards gradually from 25 to 79?×?10?8 m3/kg above 5.5 m, but other magnetic properties, such as frequency-dependent magnetic susceptibility (χfd % and χfd), susceptibility of anhysteretic remanent magnetization (χARM), and saturation isothermal remanent magnetization (SIRM) did not show a similar degree of enhancement. The magnetic grain size indicators of χARM/χlf, χARM/SIRM, and χlf/SIRM all indicate a trend of increasing magnetic grain size from the 5.5 m to the top of section; however, the bulk sediment grain size decreases gradually within the same interval. The total organic carbon is very low (0.2–0.7%), and thus, it is unlikely that the sedimentary environment is sufficiently strongly reducing to lead to the dissolution of magnetic minerals. Therefore, we infer that the coarsening-upwards of the magnetic grain size, and the increasing magnetic susceptibility from 5.5 m, reflect the gradual preferential preservation of magnetic minerals, caused by the deepening of the lake. Thus, we interpret the magnetic record of the section as reflecting the gradual deepening of the late stage of Gega ice-dammed lake. Last, the abrupt disappearance of the lake may have resulted in an outburst flood.  相似文献   

17.
Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.  相似文献   

18.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0°C and 10°C were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (N EE) of CBS occurred in early summer because maximum ecosystem photosynthesis (G PP) occurred earlier than maximum ecosystem respiration (R e). During summer, QYZ experienced severe drought and N EE decreased significantly mainly as a result of the depression of G PP. At DHS and XSBN, N EE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem G PP was dispressed. The Q 10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual N EE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and ?320.0 g·C·m?2·a?1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of N EE/R e increased with latitude, while R e/G PP, ecosystem light use efficiency (L UE), precipitation use efficiency and average daily G PP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

19.
The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

20.
After the detection of the 1,20,21-C_(29) long-chain triol in some sediments and freshwater pteridophytes, in this study, a new homologous long-chain triol, 1,3,4-C_(27-29), is detected for the first time in the Site4 B core sediment in the northern South China Sea. The hydroxyl location and length of the carbon chain of this newly discovered triol differ from those of 1,20,21-C_(29) triol. The test results of its molecular distribution and individual carbon isotope reveal that 1,3,4-C_(29) triol has a good correlation with n-C_(26-30) even carbon-numbered long-chain fatty alcohols, with R~2(n=68) values of 0.905, 0.929 and 0.903, respectively, and its carbon isotope composition, at –32.3‰±1.9‰, is similar to that of n-C_(26-30), at –29.13‰±0.87‰, –32.98‰±1.28‰, and –32.98‰±1.28‰. 1,3,4-C_(29) triol from the Site4 B core sediment and terrigenous long-chain fatty alcohol(n-C_(26-34)) show highly consistent distribution trends in the entire section; thus, the former could serve as a proxy indicator of the terrigenous input. Considering that the 1,20,21-C_(29) triol in previous research belongs to Azolla, which are fresh water pteridophytes, the 1,3,4-C_(27-29) triol identified in this study might have similar biogenetic derivation. Thus, determination of its biogenic area and growing environment could provide potential organic geochemical evidence supporting the terrigenous input and source in the northern South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号