首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vegetated urban canopy model (VUCM), which includes parametrizations of urban physical processes for artificial surfaces and vegetated areas in an integrated system, has been further developed by including physical processes associated with grass-covered surfaces in urban pervious surfaces and the photosynthesis effects of urban vegetation. Using measurements made from three urban/suburban sites during the BUBBLE field campaign in 2002, the model’s performance in modelling surface fluxes (momentum flux, net radiation, sensible and latent heat fluxes and storage heat flux) and canopy air conditions (canopy air temperature and specific humidity) was critically evaluated for the non-precipitation and the precipitation days. The observed surface fluxes at the urban/suburban sites were significantly altered by precipitation as well as urban vegetation. Especially, the storage heat at urban surfaces and underlying substrates varied drastically depending on weather conditions while having an important role in the formation of a nocturnal urban surface layer. Unlike the nighttime canopy air temperature that was largely affected by the storage-heat release, the daytime canopy air conditions were highly influenced by the vertical turbulent exchange with the overlying atmosphere. The VUCM well reproduced these observed features in surface fluxes and canopy air conditions at all sites while performing well for both the non-precipitation and the precipitation days. The newly implemented parametrizations clearly improved the model’s performance in the simulation of sensible and latent heat fluxes at the sites, more noticeably at the suburban site where the vegetated area fraction is the largest among the sites. Sensitivity analyses for model input parameters in VUCM elucidated the relative importance of the morphological, aerodynamic, hydrological and radiative/thermal properties in modelling urban surface fluxes and canopy air conditions for daytime and nighttime periods. These results suggest that the VUCM has great potential for urban atmospheric numerical modelling for a range of cities and weather conditions in addition to having a better physical basis in the representation of urban vegetated areas and associated physical processes.  相似文献   

2.
Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle (D endroctonus ponderosae) outbreak and its associated blue stain fungi (Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine (Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater confidence in measurements for all dynamic disturbances.  相似文献   

3.
Summary During the Basel Urban Boundary Layer Experiment (BUBBLE) conducted in 2002, micrometeorological in-situ data were collected for different sites using a variety of instruments. This provides a unique data set for urban climate studies. Nevertheless, the spatial distribution of energy and heat fluxes can only be taken into account with remote sensing methods or numerical models. Therefore, multiple satellite images from different platforms (NOAA-AVHRR, MODIS and LANDSAT ETM+) were acquired, processed and analysed. In addition, a high resolution digital elevation model (DEM) and a 1 m resolution digital surface model (DSM) of a large part of the city of Basel was utilized. This paper focuses on the calculation and modelling of the ground (or storage) heat flux density using remotely sensed data combined with in-situ measurements using three different approaches. First, an empirical regression function was generated to estimate the storage heat flux from NDVI values second approach used the Objective Hysteresis Model (OHM) which is often used for in-situ measurements. The last method used information of the geometric parameters of urban street canyons, computed from the high resolution digital urban surface model. Modelled and measured data are found to be in agreement within ±30 Wm−2 and result in a coefficient of determination (R2) of 0.95.  相似文献   

4.
对临海沙漠地区非均匀地表区域地表能量通量和蒸发(蒸散)的研究,是一个十分重要但又是一个难点问题。本文提出了1个基于卫星遥感和地面观测的参数化方案,并把其应用于沙特阿拉伯吉达地区,利用1个景的陆地资源卫星Landsat-7E^TM^ 资料进行了分析研究,得到了一些有关临海沙漠地区非均匀地表区域地表特征参数、植被参数和地表能量通量的新概念。最后讨论了所提出的参数化方案的适用范围和需改进之处。  相似文献   

5.
Summary The in-situ performance of heat flux plates within coarse porous substrates might be limited due to poor contact between plate and substrate. We tested this behaviour with a simple laboratory set-up. Two test substrates were placed above a reference material of known thermal conductivity between a warm and a cold plate to establish a vertical heat flux. The temperature gradients and the response of a soil heat flux plate were measured. By means of the Fourier law of heat conduction the thermal conductivity of each test substrate was calculated, thus incorporating all heat transfer within the volume and representing the “effective” conductivity. The laboratory method had an accuracy of up to ±7% (±13% for a smaller set-up). In comparison, heat flux plate-derived heat fluxes showed errors of up to 26%. Use of heat flux plates in coarse substrates is not recommended without additional measurements.  相似文献   

6.
Summary High resolution radiances from SPOT satellite imagery converted to Normalized Difference Vegetation Indices (NDVI) over a 16×16 km2 mixed ground cover study-area in the Apalachicola National Forest in northwest Florida, along with in situ measurements from a Bowen ratio surface flux monitoring system and physical modeling techniques, are used to determine the length manifold beyond which degraded resolution satellite imagery fails to capture flux variability over the scene. The investigation is relevant to an understanding of how bias error is generated in methods designed to produce scale-invariant surface flux estimates from satellite measurements. Error estimates are based on assigning characteristic NDVI values to the four predominant types of ground cover found within the study-area. An open site near the center of the study-area, which satisfies the conditions for surface flux monitoring, is used for obtaining input data for a biosphere-atmosphere exchange model designed to calculate representative fluxes for the different ground covers. Continuous 6-minute meteorological and surface flux measurements were made at the monitoring site for a period of 22 days. These measurements are used in conjunction with surface layer theory to provide surface layer profile estimates of wind speed, temperature, and relative humidity at the tops of the forested sites. The measured and derived meteorological parameters, together with representative biophysical parameters, are used as input to the biosphere-atmosphere exchange model. By representing sensible and latent heat flux distributions due to the variable ground cover with characteristic NDVI values at 20-m resolution, baseline area-wide sensible and latent heat flux quantities are calculated. Error-growth curves as a function of spatial resolution for the fluxes are found by degrading the resolution of the SPOT radiances used to calculate NDVI, and rationing the associated area-wide fluxes to the baseline values. The point at which an error-growth curve becomes invariant represents the edge of a length manifold beyond which the satellite input no longer contains information on surface flux variability, even though NDVI variability continues at all scales up to that of the complete SPOT scene. The error-growth curves are non-linear, with all the error build-up taking place between 20 m and 1.6 km. Decreasing the spatial resolution of the NDVI information down to or below 1.6 km, introduces bias errors in the area-wide surface flux estimates of 10% for sensible heat and 8% for latent heat. The underlying assumptions and modeling produce uncertainty in estimating the manifold limits, however, the principal objective is to show that in using satellite data for scale-invariant surface flux retrieval, there is an optimal spatial resolution factor that can be objectively quantified.With 10 Figures  相似文献   

7.
Summary The computation of the fluxes between ground surface and air in atmospheric models is based on the assumption that the surfaces parameters are horizontally homogeneous. In reality, the surface is heterogeneous, inducing a difference between the computed and realistic fluxes. Assuming that the distributions of temperature and humidity of the surface are normal, the difference of the fluxes for homogeneous and heterogeneous surface is found theoretically. The results show that the effect of the heterogeneity on the radiation flux is small, but attains a certain degree on the sensible and latent heat fluxes. However, this effect on the heat fluxes is not great when the standard deviation of the distribution of the surface parameters also is small. Only in case of great standard deviation, the difference may attain several W/m2 even the order of magnitude of 10 W/m2. Usually the computed sensible and latent heat fluxes are slightly greater for the heterogeneous case than that for homogeneous case, but when the interaction between the temperature and humidity of the surface is considered, the reverse is true. Received January 18, 2001 Revised July 31, 2001  相似文献   

8.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

9.
The UK Met Office has introduced a new scheme for its urban tile in MOSES 2.2 (Met Office Surface Exchange Scheme version 2.2), which is currently implemented within the operational Met Office weather forecasting model. Here, the performance of the urban tile is evaluated in two urban areas: the historic core of downtown Mexico City and a light industrial site in Vancouver, Canada. The sites differ in terms of building structures and mean building heights. In both cases vegetation cover is less than 5%. The evaluation is based on surface energy balance flux measurements conducted at approximately the blending height, which is the location where the surface scheme passes flux data into the atmospheric model. At both sites, MOSES 2.2 correctly simulates the net radiation, but there are discrepancies in the partitioning of turbulent and storage heat fluxes between predicted and observed values. Of the turbulent fluxes, latent heat fluxes were underpredicted by about one order of magnitude. Multiple model runs revealed MOSES 2.2 to be sensitive to changes in the canopy heat storage and in the ratio between the aerodynamic roughness length and that for heat transfer (temperature). Model performance was optimum with heat capacity values smaller than those generally considered for these sites. The results suggest that the current scheme is probably too simple, and that improvements may be obtained by increasing the complexity of the model.  相似文献   

10.
The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat (Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas ("footprint") of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%-30% in terms of the influence of input parameters and the non-dimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a "micro-α scale"), depending on local meteorological conditions.  相似文献   

11.
黄土高原塬区地表辐射和热量平衡观测与分析   总被引:24,自引:11,他引:13  
利用2005年夏季黄土高原塬区陆面过程野外试验(LOPEX05)的观测资料,初步分析了甘肃平凉黄土高原塬区地表辐射收支和热量平衡特征。结果显示,黄土高原塬区地面长波辐射大于大气长波辐射,典型晴天、阴天和雨天情况下两者平均差值分别为65,25和8 W.m-2;对于地气能量交换各个分量而言,黄土高原塬上和塬下在相同下垫面下的差别不大,但裸地和有植被的下垫面差别很明显;在白天,潜热在净辐射中所占的比重较大,其次是感热,最后是土壤热通量。对能量平衡中的储存项如热通量板上层土壤的热存储和植被冠层存储进行了估算,结果表明,土壤的热储存项在-30~70W.m-2之间,而植被的热能储存项在-10~25 W.m-2之间。在考虑估算的存储项之后,能量平衡散布图斜率由0.68提高到0.79,相关系数R由0.90提高到0.93,两者分别提高了11.0%和3.0%,并对能量不平衡有明显的改进,说明能量储存项在地表能量闭合中必须考虑。  相似文献   

12.
A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models   总被引:28,自引:1,他引:27  
An urban surface scheme for atmospheric mesoscale models ispresented. A generalization of local canyon geometry isdefined instead of the usual bare soil formulation currently usedto represent cities in atmospheric models. This allows refinement ofthe radiative budgets as well as momentum, turbulent heat and ground fluxes.The scheme is aimed to be as general as possible, in order to representany city in the world, for any time or weather condition(heat island cooling by night, urban wake, water evaporation after rainfalland snow effects).Two main parts of the scheme are validated against published data.Firstly, it is shown that the evolution of the model-predictedfluxes during a night with calm winds is satisfactory, considering both the longwave budget and the surface temperatures. Secondly, the original shortwave scheme is tested off-line and compared to the effective albedoof a canyon scale model. These two validations show that the radiative energy input to the urban surface model is realistic.Sensitivity tests of the model are performed for one-yearsimulation periods, for both oceanic and continental climates. The scheme has the ability to retrieve, without ad hoc assumptions, the diurnal hysteresis between the turbulent heat flux and ground heat flux. It reproduces the damping of the daytime turbulent heat flux by the heat storage flux observed in city centres. The latent heat flux is negligible on average,but can be large when short time scales are considered (especially afterrainfall). It also suggests that in densely built areas, domesticheating can overwhelm the net radiation, and supply a continuous turbulentheat flux towards the atmosphere. This becomes very important inwinter for continental climates. Finally, a comparison with a vegetation scheme shows that the suburban environment can be represented with a bare soil formulation for large temporal or spatial averages (typical of globalclimatic studies), but that a surface scheme dedicated to the urban surface is necessary when smaller scales are considered: town meteorological forecasts, mesoscale or local studies.  相似文献   

13.
Radiometric surface temperatures, derived from measurements by the AVHRR instrument aboard the NOAA-9 and the NOAA-11 polar orbiting satellites, were used in combination with wind velocity and temperature profiles measured by radiosondes, to calculate surface fluxes of sensible heat. The measurements were made during FIFE, the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment, in a hilly tall grass prairie area of northeastern Kansas. The method of calculation was based on turbulent similarity formulations for the atmospheric boundary layer. Good agreement (r = 0.7) was obtained with reference values of sensible heat flux, taken as arithmetic means of measurements with the Bowen ratio method at six ground stations. The values of evaporation (latent heat fluxes), derived from these sensible heat fluxes by means of the energy budget, were also in good agreement (r = 0.94) with the corresponding reference values from the ground stations.  相似文献   

14.
The variability of surface sensible heat flux depends strongly on the heating rate of the material beneath the surface. This variability is expected to be large in urban areas where the surfaces are layered with a variety of man-made materials. Parameterization of the ground heat storage as a function of surface materials is presented based on analyses of data obtained during the U.S. Environmental Protection Agency's Regional Air Pollution Study conducted in St. Louis, Missouri. Ground heat flux data are derived from observations of surface and subsurface temperatures for a soil layer and for concrete slabs resting on soil. The data show that the presence of the concrete slabs increases the ground storage term relative to that for soil alone. The ground storage and sensible heat flux terms for a blackened concrete slab are larger than for an unpainted concrete slab. For the concrete surfaces, the ratio of ground storage to net radiation is >1 at night and <1 during the day. This ratio is discontinuous at sunrise and sunset transition periods. For soil, the ratio shows similar temporal behavior except that on average, there is a smoother transition at sunrise. Simple mathematical expressions giving the ratio of ground heat storage to net radiation as a function of time are presented.Now with Enviroplan, Incorporated, West Orange, NJ 07052, U.S.A.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

15.
From September 2006 to September 2007, the intersite variability of turbulence characteristics and turbulent heat fluxes was analysed at two urban stations in Essen, Germany. One site was situated within an urban residential setting while the other was located at the border of an urban park and suburban/urban residential housing. Therefore, the surroundings at both sites contributing to surface–atmosphere exchange differed in terms of surface cover and surface morphology. During the 1-year measurement period, 19% of data were characterised by stable atmospheric stratification. Since observations of urban turbulence characteristics under stable stratification are scarce, so far, this work adds additional input to this discussion. Turbulence characteristics, i.e. normalised standard deviations of wind components, were in agreement to empirical fits from other urban observations under both instable and stable atmospheric stratification. However, differences in magnitude of turbulence characteristics between sites were observable. Comparison of turbulent heat fluxes indicated typical urban features in the site located in the urban setting with increased surface heating and higher surface heat fluxes by about 30%. Also the temporal evolution of heat fluxes on the diurnal course was affected. Differences in momentum flux were of minor magnitude with about 6% variation on average between sites. Findings indicate that multiple urban flux measurements within one city may be characterised by general similarities in terms of turbulent characteristics but are still significantly influenced by differences in the surface cover of the flux footprint.  相似文献   

16.
Summary Typical observations of surface energy fluxes in urban areas usually employ the eddy covariance approach with measurements from a tower at a height well above the roughness elements. Net radiation and the turbulent fluxes are directly measured, the anthropogenic flux may be estimated and the storage flux is calculated as an energy balance residual. This paper reports both measurement and modelling of energy fluxes during wintertime in suburban areas of Christchurch, New Zealand. Under settled anticyclonic conditions, a strong inversion can occur over the city which severely restricts turbulent mixing. Even after sunrise the turbulent fluxes are small, and if one assumes advection is negligible, this means the storage flux increases in importance to very high levels. This paper suggests that these high storage rates are physically unrealistic for this environment. Rather, it is likely that some energy, which is assumed to be dissipated as heat storage, is more likely lost through mesoscale advection or attributed to errors caused by unsuitable measurement techniques under conditions with low friction velocity. However, even these two processes cannot fully account for flux loss. A full study is recommended to resolve this issue and meanwhile, caution is advised when applying current research methodology to estimate storage fluxes in urban areas in stable wintertime conditions.  相似文献   

17.
In order to provide high quality data for climate change studies, the data quality of turbulent flux measurements at the station of SACOL (Semi-Arid Climate & Environment Observatory of Lanzhou University), which is located on a semi-arid grassland over the Loess Plateau in China, has been analyzed in detail. The effects of different procedures of the flux corrections on CO2, momentum, and latent and sensible heat fluxes were assessed. The result showed that coordinate rotation has a great influence on the momentum flux but little on scalar fluxes. For coordinate rotation using the planar fit method, different regression planes should be determined for different wind direction sectors due to the heterogeneous nature of the ground surface. Sonic temperature correction decreased the sensible heat flux by about 9%, while WPL correction (correction for density fluctuations) increased the latent heat flux by about 10%. WPL correction is also particularly important for CO2 fluxes. Other procedures of flux corrections, such as the time delay correction and frequency response correction, do not significantly influence the turbulent fluxes. Furthermore, quality tests on stationarity and turbulence development conditions were discussed. Parameterizations of integral turbulent characteristics (ITC) were tested and a specific parameterization scheme was provided for SACOL. The ITC test on turbulence development conditions was suggested to be applied only for the vertical velocity. The combined results of the quality tests showed that about 62%–65% of the total data were of high quality for the latent heat flux and CO2 flux, and as much as about 76% for the sensible heat flux. For the momentum flux, however, only about 35% of the data were of high quality.  相似文献   

18.
The micrometeorological observations, collected over a station in Ranchi (23°45′N, 85°30′E) which is under the monsoon trough region of India, were used in the Noah-LSM (NCEP, OSU, Air Force and Office of Hydrology Land Surface Model) to investigate the model performance in wet (2009 and 2011) and dry (2010) conditions during the south-west summer monsoon season. With this analysis, it is seen that the Noah-LSM has simulated the diurnal cycle of heat fluxes (sensible and ground) reasonably. The simulated heat fluxes were compared with its direct measurements by sonic anemometer and soil heat flux plate. The net radiation and sensible heat flux are simulated well by the model, but the simulation of ground heat flux was found to be poor in both dry as well as wet conditions. The soil temperature simulations were also found to be poor in 0–5- and 5–10-cm layers compared to other deeper layers. The observations were also correlated with the Modern Era Retrospective-analysis for Research and Applications (MERRA) data. The correlation between the observations and ground heat flux was better in MERRA dataset than that of the Noah-LSM simulation.  相似文献   

19.
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere–land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W $\text{ m }^{-2}$ , due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.  相似文献   

20.
Two land surface schemes, SCAM and CSIRO9, were used to model the measured energy fluxes during the OASIS (Observations At Several Interacting Scales) field program. The measurements were taken at six sites along a 100 km rainfall gradient. Two types of simulations were conducted: (1) offline simulations forced with measured atmospheric input data at each of the six sites, and (2) regional simulations with the two land surface schemes coupled to the regional climate model DARLAM.The two land surface schemes employ two different canopy modelling concepts: in SCAM the vegetation is conceptually above the ground surface, while CSIRO9 employs the more commonly used `horizontally tiled' approach in which the vegetation cover is modelled by conceptually placing it beside bare ground. Both schemes utilize the same below-ground components (soil hydrological and thermal models) to reduce the comparison to canopy processes only. However, the ground heat flux, soil evaporation and evapotranspiration are parameterised by the two canopy treatments somewhat differently.Both canopy concepts reproduce the measured energy fluxes. SCAM has a slightly higher root-mean standard error in the model-measurement comparison for the ground heat flux. The mean surface radiative temperature simulated by SCAM is approximately 1K lower than in the CSIRO9 simulations. However, the soil and vegetation temperatures (which contribute to the radiative temperature) varied more in the CSIRO9 simulations. These larger variations are due to the absence of a representation of the aerodynamic interactions between vegetation and ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号