首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9–6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.  相似文献   

2.
The Gough Island lavas range from picrite basalt through tosodalite-bearing aegirine-augite trachyte. The basaltic lavasare predominantly nepheline normative alkali basalts, althougha group of hypersthene normative tholeiitic basalts does occur.The oldest lavas on the island, represented by the Lower Basaltseries, are approximately 1?0 m.y. old and the youngest arethe Upper Basalts with an age of {small tilde} 0?13 m.y. Relatively coherent variations are described by the basalticand trachytic lavas with respect to both bulk rock major andtrace element geochemistry and mineral chemistry, and quantitativepetrogenetic modelling suggests that most of the variation canbe attributed to crystal fractionation/accumulation processesacting on a number of geochemically distinct parental magmas.The Upper Basalts and Lower Basalts have (within the limitsof sampling) a relatively restricted composition compared tothe Middle Basalt series lavas, with the latter ranging frompicrite basalt through to trachyandesite. The picrite basaltsand coarsely pyroxene-olivine phyric basalts represent partialcumulates with varying proportions (up to 40 wt. per cent) ofaccumulated olivine and clinopyroxene. In contrast, the moderatelyphyric and aphyric/finely porphyritic lavas represent the productsof crystal fractionation with the most evolved lavas havingexperienced at least 40 per cent fractional crystallizationof clinopyroxene, olivine, plagioclase and minor Fe-Ti oxidesand apatite. The detailed abundance variations in these lavasindicate that a number of parental magma compositions have fractionatedto produce the overall variations in basalt geochemistry, andsome of the magmas have interacted through mixing processes. The trachytic lavas show a large range in trace element abundance,but have only a limited major element variation. Most of thisvariation can be attributed to extensive (up to 70 per cent)fractional crystallization of predominantly alkali feldsparwith minor clinopyroxene, olivine, biotite, titano-magnetiteand apatite. A number of genetically distinct trachytes canbe recognized which are probably not related to each other byany simple fractional crystallization process. The compositionof the least evolved trachytes can be adequately accounted forby relatively extensive (up to 60 per cent) fractionation ofthe more evolved Middle Basalt series lavas. The trace element and isotopic characteristics of primitiveGough Island basalts support the concept that the source region(s)giving rise to these lavas is extremely enriched in highly incompatibleelements relative to primordial or ‘undepleted’mantle of bulk earth composition. It is unlikely that the lavashave sampled undepleted mantle as might be suggested by thesimilarity of the Sr and Nd isotopic ratios to ‘bulk earth’values. Rather, a model is favoured whereby the lavas are derivedfrom previously enriched sub-oceanic mantle which was subsequentlyinvaded and further enriched, at some time prior to partialmelting, by melts or fluids highly enriched in incompatibleelements. The enrichment could have occurred as veining by smalldegree partial melts or by infiltration of metasomatic fluids.  相似文献   

3.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

4.
The volcanic rocks of Aden, Little Aden, and Ras Imran, heredesignated as belonging to the Aden Volcanic Series, were eruptedthrough central-vent, strato-volcanoes about 5 m.y. ago. Inits major element chemistry the Aden Volcanic Series is intermediatebetween the alkaline and tholeiitic associations, and this isdemonstrated by comparing it with the alkaline suite of Hawaiiand the tholeiitic series of Thingmuli, Iceland. It is proposedthat the most acceptable ‘parental’ magma is a mildlyalkaline olivine basalt which, on fractionation, produced aseries ranging from trachybasalts through trachyandesites andtrachytes to rhyolites. These rhyolites are peralkaline as themolecular proportion of alumina is less than that of the combinedalkalis, and are comenditic as the series is poor in normativefemic constituents. Trace element data suggest that the peralkalinesilicic eruptives are chemically comparable with those of MayorIsland, New Zealand, where a mildly alkaline olivine basaltparent has also been postulated. Although the age of eruption of c. 5 m.y., given by K-Ar measurements,is entirely consistent with an age deduced from geomorphologicalcriteria, an 87Sr/86Sr versus 87Rb/86Sr isochron plot suggeststhat the series is related to a thermal event some 20-30 m.y.older than the age of eruption. As this earlier age correspondsdirectly to the age of the previous magmatic episode, the eruptionof the Yemen Trap Series, the upper part of which is petrologicallysimilar to the Aden Volcanic Series, and as the initial 87Sr/86Srratios suggest that the magma originated in the mantle, it isproposed that the most acceptable petrogenetic scheme, whichwould also explain the anomalously old Rb-Sr age, is: (a) Partialfusion in the upper mantle giving rise to the alkaline YemenTrap Series, (b) After the cessation of surface activity, alarge body of magma existed in the upper mantle and this magma,on crystallizing, fractionated to produce a layered sequence,(c) About 5 m.y. ago some event, either pressure relief or furtherthermal activity, resulted in the partial remelting of thisfractionated plutonic sequence and the liquids so formed reachedthe surface without significant mixing or chemical fractionation.  相似文献   

5.
A series of basaltic and andesitic lavas from three centers in the Cascades (Lassen, Medicine Lake, Mt. Shasta) have been investigated. The lavas are weakly porphyritic, containing phenocrysts of plagioclase, augite, and olivine or orthopyroxene; these phases are also found in the groundmass. Titanomagnetite is a groundmass phase in most lavas but it appears to be absent in some. A sub-calcic augite is found in the groundmass in some of the basic lavas. Orthopyroxenes are present only in the salic lavas and show an increase in calcium with increasing iron. The range in composition shown by both phenocryst and groundmass plagioclase is very similar except that the phenocrysts extend to slightly more calcic compositions. The residual glasses in many of the lavas have a rhyolitic composition. However, only those from the Shasta andesites have normative salic constituents that plot near the ternary minimum in the Ab-Or-Qtz system at 500 bars. Both chemical and mineralogical data allow the lavas of the different centers to be distinguished from one another. The most likely origin for the orogenic lavas of the Cascades is by partial melting of the upper mantle.  相似文献   

6.
Isotopic analysis of two Archean komatiitic flows from Alexo, Ontario, gives a Pb-Pb isochron age of 2690 ± 15 Ma and a Sm-Nd isochron age of 2752 ± 87 Ma. These ages agree well with U-Pb zircon ages from underlying and overlying volcanics. The variations in element ratios that define the isochrons were not produced during crystallization of the lavas. The spread in U/Pb was caused by submarine alteration soon after eruption, and the spread in Sm/Nd resulted from (a) differences in the composition of the residue of melting, and (b) contamination of the upper komatiite flow through thermal erosion of the lower flow.The 147Sm/144Nd ratio of uncontaminated komatiite is 0.25 which reflects the depleted nature of its mantle source. The Th/U ratio of about 3.4 is probably also representative of depleted mantle. The initial ?Nd of +2.44 ± 0.51 indicates that the mantle depletion took place long before magma formation.  相似文献   

7.
The Mafic and Ultramafic Lavas of the Belingwe Greenstone Belt, Rhodesia   总被引:3,自引:3,他引:3  
The Belingwe Greenstone Belt (2.8 x 109 yrs old) contains a7 km succession of mafic and ultramafic lavas and high-levelintrusions which overlie a thin sedimentary formation, itselfunconformable on a granitic basement. The lavas range in compositionfrom andesites (4 per cent MgO) to peridotitic komatiites (32per cent MgO). The mineralogy and textures of the most magnesianlavas demonstrate that they were extruded in a completely liquidstate. If the source mantle had an MgO content around 40 percent, then partial melts in the range 35 per cent to 55 percent would be required to produce the most magnesian liquidsobserved. Chemical constraints on the petrogenesis of the ultramafic lavasallow estimates of source mantle composition. In particular,if the source had an MgO content around 40 per cent, then theoverall source composition would be similar to that of garnetIherzolite nodules in kimberlites. The calculated REE contentsof the source are close to chondritic. If all the ultramaficlavas were derived from the same source then the variation inliquid composition may have been controlled by orthopyroxeneas well as olivine during partial melting at depth. The evolutionof the less magnesian komatiites, basalts, and andesites canbe explained by lower degrees of partial melting of a commonsource, and by high-level fractionation of parent liquids similarto those extruded as ultramafic lavas. Physical constraints on the origin of the lavas imply derivationfrom a depth of 150 km or more, at temperatures of 1600–2000°C.  相似文献   

8.
Within the volcanic sequence of the twin volcanoes of Lyttelton and Akaroa, Banks Peninsula, New Zealand a number of different magma series have been distinguished.An early series of hawaiites (McQueens Valley Formation) was erupted about 32 m.y. ago and is of transitional or mildly tholeiitic chemistry. Stratigraphically above the McQueens Valley Formation, but unconformably overlain by the main volcanic dome sequence, is a unit of rhyolite (Gebbies Pass Rhyolites) which is not directly related to the earlier or later basaltic volcanism. The rhyolite was probably formed during intracrustal melting which was related to the rise of basaltic magma into the crust.Between 12 and 9.7 m.y. a large volcanic dome, composed mainly of hawaiite, was built at Lyttelton. Dykes, which intrude the Lyttelton volcanic sequence, range in composition from basalt to trachyte. Late, mildly alkalic, basaltic flank flows (7.5–5.8 m.y.) occur in several areas and they, and the differentiated rocks of the dyke swarm can be related by a crystal fractionation model which has been quantitatively tested.Following construction of the Lyttelton dome a second larger dome was built at Akaroa between 9 and 7.5 m.y. The rocks of the Akaroa Volcano are principally hawaiites but rocks ranging in composition through to trachyte also occur. The differentiated rocks of the Akaroa volcano have derived from the basaltic rocks by a crystal fractionation controlled process, operating during ascent through the crust.None of the Banks Peninsula basalts appear to have derived from primitive (pyrolitic) mantle material, but progressive changes in the chemistry of the basalts with time implies that the mantle source regions were evolving geochemically as partial melting proceeded. Later lavas tend to be more alkalic and to have lower MgO/FeO ratios than earlier lavas. The volcanic rocks of the Banks Peninsula volcanoes were derived by fractional removal of olivine, plagioclase, clinopyroxene, magnetite and apatite from ascending basaltic magma batches. Variations between the suites reflect differences between the parental magma batches.  相似文献   

9.
《International Geology Review》2012,54(12):1456-1474
We present new major element, trace element, and Sr–Nd–Pb isotope data for 18 basaltic lavas and six glasses collected in situ from the Eastern Lau Spreading Centre (ELSC) and the Valu Fa Ridge (VFR). All lava samples are aphanitic and contain rare plagioclase and clinopyroxene microlites and microphenocrysts. The rocks are sub-alkaline and range from basalt and basaltic andesite to more differentiated andesite. In terms of trace element compositions, the samples are transitional between typical normal mid-ocean ridge basalt (MORB) and island arc basalt. Samples from the VFR have higher large ion lithophile element/high field strength element ratios (e.g. Ba/Nb) than the ELSC samples. VFR and ELSC Sr–Nd isotopic compositions plot between Indian MORB and Tonga arc lavas, but VFR samples have higher 87Sr/86Sr for a given 143Nd/144Nd ratio than ELSC analogues. The Pb isotopic composition of ELSC lavas is more Indian MORB-like, whereas that of VFR lavas is more Pacific MORB-like. Our new data, combined with literature data for the Central Lau Spreading Centre, indicate that the mantle beneath the ELSC and VFR spreading centres was originally of Pacific type in composition, but was displaced by Indian-type mantle as rifting propagated to the south. The mantle beneath the spreading centres also was variably affected by subduction-induced metasomatism, mainly by fluids released from the altered, subducting oceanic crust; the influence of these components is best seen in VFR lavas. To a first approximation, the effects of underflow on the composition and degree of partial melting of the mantle source of Lau spreading centre lavas inversely correlate with distance of the spreading centres from the Tonga arc. Superimposed on this general process, however, are the effects of the local geographic contrasts in the composition of subduction components. The latter have been transferred mainly by dehydration-generated fluids into the mantle beneath the Tonga supra-subduction zone.  相似文献   

10.
The Alligator Lake complex is a Quaternary alkaline volcanic center located in the southern Yukon Territory of Canada. It comprises two cinder cones which cap a shield consisting of five distinct lava units of basaltic composition. Units 2 and 3 of this shield are primitive olivine-phyric lavas (13.5–19.5 cation % Mg) which host abundant spinel lherzolite xenoliths, megacrysts, and granitoid fragments. Although the two lava types have erupted coevally from adjacent vents and are petrographically similar, they are chemically distinct. Unit 2 lavas have considerably higher abundances of LREE, LILE, and Fe, but lower HREE, Y, Ca, Si, and Al relative to unit 3 lavas. The 87Sr/86Sr and 143Nd/144Nd isotopic ratios of these two units are, however, indistinguishable. The differences between these two lava types cannot be explained in terms of low pressure olivine fractionation, and the low concentrations of Sr, Nb, P, and Ti in the granitoid xenoliths relative to the primitive lavas discounts differential crustal contamination. The abundance of spinel lherzolite xenoliths and the high Mg contents in the lavas of both units indicates that their compositional differences originated in the upper mantle. The Al and Si systematics of these lavas suggests that, compared to unit 3 magmas, the unit 2 magmas may have segregated at greater depths from a garnet lherzolite mantle. The identical isotopic composition and similar ratios of highly incompatible elements in these two lava units argues against their differences being a consequence of random metasomatism or mantle heterogeneity. The lower Y and HREE contents but higher concentrations of incompatible elements in the unit 2 lavas relative to unit 3 can be most simply explained by differential partial melting of similar garnet-bearing sources. The unit 2 magmas thus appear to have been generated by smaller degrees of melting at a greater depth than the unit 3 magmas. The contemporaneous eruption of two distinct but volumetrically restricted primary magmas from adjacent vents at the Alligator Lake volcanic complex suggests that volcanism in this region of the Canadian Cordillera is controlled by localized, small batch processes.  相似文献   

11.
Anhydrous phase relations were determined at 1 atm and 10 to 15 kbar for primitive high-alumina basalts (79–35g and 82–72f) from Giant Crater at Medicine Lake volcano. These compositions are multiply saturated with olivine+augite+plagioclase+spinel+/-orthopyroxene near the liquidus at about 11 kbar. Experiments on mixtures of sample 79–35g with orthopyroxene and olivine determined the location of the multiple saturation boundaries where liquid coexists with the assemblage olivine+augite+orthopyroxene+plagioclase at 10 kbar and olivine+augite+orthopyroxene+spinel at 15 kbar. The mix experiments showed that primitive Medicine Lake high alumina basalts (HABs) are close in composition to liquids in equilibrium with a mantle lherzolite source containing olivine+augite+ orthopyroxene+spinel+plagioclase at 11 kbar. Orthopyroxene observed as a near liquidus phase in an 11 kbar experiment on sample 82–72f supports this conclusion. The most primitive HABs from Medicine Lake are low in K2O (0.07 wt.%), high in MgO (>10 wt.%) and Ni (231 ppm), and have light-rare earth element depletions and large ion lithophile element enrichments. A model for the origin of these near-primary high-alumina basalts is that they are partial melts of a MORB-like mantle lherzolite source that has been enriched by a fluid component derived from the subducted slab. The HAB magma segregated from its mantle residue just below the base of the crust near the crust-mantle boundary.  相似文献   

12.
High-Mg basaltic andesites and andesites occur in the central trans-Mexican volcanic belt, and their primitive geochemical characteristics suggest equilibration with mantle peridotite. These lavas may represent slab melts that reequilibrated with overlying peridotite or hydrous partial melts of a peridotite source. Here, we experimentally map the liquidus mineralogy for a high-Mg basaltic andesite (9.6 wt% MgO, 54.4 wt% SiO2, Mg# = 75.3) as a function of temperature and H2O content over a range of mantle wedge pressures. Our results permit equilibration of this composition with a harzburgite residue at relatively high water contents (>7 wt%) and low temperatures (1,080–1,150°C) at 11–14 kbar. However, in contrast to the high Ni contents characteristic of olivine phenocrysts in many such samples from central Mexico, those of olivine phenocrysts in our sample are more typical of mantle melts that have fractionated a small amount of olivine. To account for this and the possibility that the refractory mantle source may have had olivine more Fo-rich than Fo90, we numerically evaluated alternative equilibration conditions, using our starting bulk composition adjusted to be in equilibrium with Fo92 olivine. This shifts equilibration conditions to higher temperatures (1,180–1,250°C) at mantle wedge pressures (11–15 kbar) for H2O contents (>3 wt%) comparable to those analyzed in olivine-hosted melt inclusions from this region. Comparison with geodynamic models shows that final equilibration occurred shallower than the peak temperature of the mantle wedge, suggesting that basaltic melts from the hottest part of the wedge reequilibrated with shallower mantle as they approached the Moho.  相似文献   

13.
The Newer Volcanics Province of Victoria and South Australia consists of a major region of mainly alkaline basalts within which are two restricted areas containing strongly differentiated flow‐rocks. Typical alkalic basalts from this widespread province have K‐Ar ages from 4.5 to 0.5 m.y. and initial 87Sr/86Sr ratios from 0.7038 to 0.7045. Contrastingly, in the Macedon area of differentiated lavas, flow compositions range from limburgite to soda trachyte, with K‐Ar ages from 6.8 to 4.6 m.y. and initial 87Sr/86Sr ratios from 0.7052 to 0.7127. These differentiated rocks therefore are older, and some of them may have been contaminated by reaction with more radiogenic basement rocks during differentiation. Alternatively, the variation in initial Sr‐isotope composition may have resulted from varying isotopic composition of partial melts from the immediate source rocks. The most felsic of the differentiated rocks, soda trachyte, is extremely enriched with Rb relative to Sr; one of the three restricted outcrops of this rock (Camel's Hump) yields a total‐rock Rb‐Sr isochron age of 6.3 ± 0.6 m.y. with an initial 87Sr/86Sr ratio of 0.7127. K‐Ar sanidine ages reported for the three outcrops of trachyte are identical to each other and to the Rb‐Sr isochron result.  相似文献   

14.
A significant feature of Quaternary volcanism in New Zealand is the presence of several compact fields of monogenetic basaltic volcanism, in many respects comparable to back-arc volcanism of Japan and intra-plate volcanism in S.E. Australia. Volcanism in South Auckland between 1.56 m.y. (B.P.) and 0.51 m.y. has produced some 20 km3 of lava and scoria from at least 70 centres. Older lavas are alkalic (basanite and alkali-olivine basalt), and are associated with maars and small scoria cones and many contain mafic and ultramafic xenoliths and megacrysts. Younger subalkalic lavas (mainly transitional tholeiite) form large scoria cones with extensive lava aprons.Chemically and mineralogically the two types are distinct and represent separate parent magmas. Alkalic magma probably differentiated near source (<25 kb) by precipitation of kaersutite, olivine, and clinopyroxene. Subalkalic lavas were the product of more voluminous melting and observed differentiation trends may be due to Al-opx and subcalcic Al-cpx precipitation at 10 to 15 kb. Progressive melting of a mantle diapir rising through the low velocity zone can account for the temporal and petrologic relationships between the two magmas.  相似文献   

15.
Lavas from Medicine Lake volcano, Northern California have been examined for evidence of magma mixing. Mixing of magmas has produced basaltic andesite, andesite, dacite and rhyolite lavas at the volcano. We are able to identify the compositional characteristics of the components that were mixed and to estimate the time lag between the mixing event and eruption of the mixed magma. Compositional data from pairs of phenocrysts identify a high alumina basalt (HAB) and a silicic rhyolite as endmembers of mixing. Mg-rich olivine or augite and Ca-rich plagioclase are associated with the HAB component, and Fe-rich orthopyroxene and Na-rich plagioclase are associated with the rhyolitic component. Some lavas contain multiple phenocryst assemblages suggesting the incorporation of several magmas intermediate between the HAB and silicic components. Glass inclusions trapped in Mg-rich olivine and Na-rich plagioclase are similar in composition to the proposed HAB and rhyolite end members and provide supportive evidence for mixing. Textural criteria are also consistent with magma mixing. Thermal curvature of the liquidus surfaces in the basalt-andesite-rhyolite system allows magmas produced by mixing to be either supercooled or superheated. Intergranular textures of basaltic andesites and andesites result from cooling initiated below the liquidus. The trachytic textures of silicic andesites form from cooling initiated above the liquidus. Reversed compositional zoning profiles in olivine crystals were produced by the mixing event, and the homogenization of the compositional zoning has been used to estimate the time interval between magma mixing and eruption. Time estimates are on the order of 80 to 90 h, suggesting that the mixing event triggered eruption.  相似文献   

16.
At Medicine Lake Volcano, California, the compositional gap between andesite (57–62 wt.% SiO2) and rhyolite (73–74 wt.% SiO2) has been generated by fractional crystallization. Assimilation of silicic crust has also occurred along with fractionation. Two varieties of inclusions found in Holocene rhyolite flows, hornblende gabbros and aphyric andesites, provide information on the crystallization path followed by lavas parental to the rhyolite. The hornblende gabbros are magmatic cumulate residues and their mineral assemblages are preserved evidence of the phases that crystallized from an andesitic precursor lava to generate the rhyolite lavas. The andesitic inclusions represent samples of a parental andesite and record the early part of the differentiation history. Olivine, plagioclase and augite crystallization begins the differentiation history, followed by the disappearance of olivine and augite through reaction with the liquid to form orthopyroxene and amphibole. Further crystallization of the assemblage plagioclase, amphibole, orthopyroxene, magnetite, and apatite from a high-SiO2 andesite leads to rhyolite. This final crystallization process occurs on a cotectic that is nearly horizontal in temperature-composition space. Since a large amount of crystallization occurs over a limited temperature interval, a compositional gap develops between rhyolite and high SiO2 andesite.Liquidus surfaces with shallow slopes in temperature-composition space are characteristic of several late-stage crystallization assemblages in the andesite to rhyolite compositional range. Experimentally produced plagioclase+ amphibole+orthopyroxene+magnetite and plagioclase+ augite+low-Ca pyroxene+magnetite cotectics have liquidus slopes that are nearly flat. At other calc-alkaline volcanic centers crystallization processes involving large compositional changes over small temperature intervals may also be important in the development of bimodal volcanism (i.e. the existence of a composition gap). At Mt. Mazama and Mt. St. Helens, USA and Aso Caldera and Shikotsu, Japan the amphibole-bearing assemblage was important. At Krakatau, Indonesia and Katmai, USA, an augite+orthopyroxene-bearing assemblage was important. In addition to its role in the production of a compositional gap between intermediate and rhyolitic lavas, the crystallization process increases the H2O content of the residual liquid. This rapid increase in residual liquid volatile content which results from the precipitation of a large proportion of crystalline solids may be an important factor among several that lead to explosive silicic eruptions.  相似文献   

17.
R.N. Thompson 《Lithos》1975,8(1):9-14
An intensely-welded ignimbrite has been identified in the upper part of the thick Palaeocene lava pile of Ubekendt Ejland, west Greenland. It consists of 2.3 volume present of phenocrysts and 2 percent of lithic fragments (basalt and trachyte) in a compact nitreous matrix of flattened and welded rhyolitic pumice fragments and glass shards. The phenocrysts are mostly of plagioclase (An17), together with minor amounts of sanidine (Or87), hydrothermally-altered olivine and augite, ilmenite and zircon. The major elements chemistry of the magmatic fraction of the rock is deduced from microprobe analyses of its constituent phases. It is suggested that this erupted pyroclastic rock may be a surface expression of high-level granite emplacement in southern Ubekendt Ejland. The source could have been an early acid member of the currently-exposed Sarqâta qáqâ plutonic complex. Recent Rb/Sr isotopic studies have shown that the acid and basic rocks of this intrusive centre, together with the surrounding basaltic lavas, define a single isochron (65 m.y.) with an initial 87Sr/86Sr ratio of 0.7045, appropriate to the upper mantle. The ultimate source of the Ubekendt Ejland ignimbr.es may therefore be sub-crustal.  相似文献   

18.
Magmatic evolution on the active volcano of Agrigan in the northern Mariana Island Arc is interpreted as resulting in the production of calc-alkaline andesites by the fractional crystallization of high-alumina basalt. Basaltic products predominate, but the ratio of andesites to basalts increases with time up to an event of voluminous andesitic pyroclastic ejection accompanied by caldera-collapse; post-collapse lavas are entirely basaltic. Moderate iron-enrichment is demonstrated for the volcanic suite, with indications of a progressive, pre-caldera decrease in iron-enrichment; post-caldera lavas display a return to moderate Fe-enrichment. Overall, the lavas are enriched in the LIL elements (K, Rb, Ba, Sr) and depleted in Ti, Mg, Cr, and Ni. From the oldest to the youngest pre-caldera volcanic sequence, the LIL elements increase 3-6X while Ca and Mg decrease by 50% or more. Approximately constant K/ Rb (430±60) and 87Sr/86Sr (0.7032–0.7034) indicate consanguinity of the basalts and the andesites. Cumulate plutonic xenoliths, common in the lavas, are composed of mineral phases also encountered as phenocrysts. The following order of crystallization is indicated: olivine; anorthite-bytownite; clinopyroxene; orthopyroxene and titanomagnetite. Co-existing xenolithic olivines (Fo74–83) and plagioclase (An88–96) are typical of calc-alkaline island-arc assemblages and contrast with assemblages in the tholeiites from the Mariana Trough to the west. The relatively fayalitic composition and low abundances of Ni in olivines and Cr in clinopyroxenes indicate equilibrium with an already-fractionated liquid. These data, along with structural evidence, high Ca in the olivines, and comparison of the observed assemblages with experimental studies, suggests that these xenoliths formed as crystal cumulates at the floor of a shallow ( 7 km) crustal magma chamber.Major element modeling studies using the separation of observed xenocrystic and phenocrystic phases from assumed parental liquids reproduce the observed temporal and geochemical variations in the lavas. Trace element modeling parallels this evolution with the exception of Cr and Ni in the andesites. An extensive (16.3 km3) gabbroic body is required by this modeling to be present beneath Agrigan to produce the inferred volumes of the various lithologies preserved in the volcano's evolution. The sum of stratigraphic, geochemical, and isotopic evidence on Agrigan supports the derivation of calc-alkaline andesite by the removal of about 75% solids from a high-alumina basalt accompanied by a process of K and Rb enrichment, such as volatile-transfer. Considerations of 87Sr/86Sr, 143Nd/144Nd, and 3He/4He isotopic data indicate that the source region of these parental liquids lies in the mantle, not subducted crust. In the northern Marianas, the model of a shallow-crustal origin for andesite is preferred over one requiring andesite generation in the deeper mantle and/or subducted slab.  相似文献   

19.
Chemical analyses of over seventy lavas or dykes containing spinel lherzolite inclusions of high pressure mineralogy, show that most host magmas are of alkali olivine basalt or basanite composition with relatively rare olivine nephelinites, and olivine melilitites. The 100 Mg/Mg+Fe++ ratios of host magmas display a strong maximum at about Mg70 consistent with partial melting of source peridotite with olivine of Fo88–90. In contrast to these primary magmas, there occur some host magmas with 100 Mg/Mg+Fe++<60 and with chemical compositions resembling those of classical hawaiite, mugearite, and nepheline benmoreite magmas. It is inferred that these magmas have been produced by crystal fractionation, within the upper mantle, of parental basanites or alkali olivine basalts. The presence of kaersutitic hornblende xenocrysts accompanying the lherzolite inclusions, and the nature of the chemical variation between associated basanites and nepheline benmoreites suggests that crystal fractionation has been dominated by kaersutitic hornblende, together with olivine and, in some cases, probably clinopyroxene. The mantle-derived nepheline benmoreite magmas also show similarities to some plutonic nepheline syenites.  相似文献   

20.
The late Pleistocene Lake Basalt of Medicine Lake volcano, California is comprised of variably porphyritic basalt and basaltic andesite flows and scoria. These eruptives are similar in composition and phenocryst abundance to the low-MgO, high-Al2O3 mafic magmas common in convergent margin settings. The petrogenesis of the magmas that produced the Lake Basalt has been inferred from field relations, melting experiments and subsequent major and trace element modeling. Their formation involved both hydrous differentiation and plagioclase accumulation and thus the Lake Basalt can be used to constrain the relative contributions of these processes to the production of high-Al2O3 arc basalt. Phenocryst-poor lavas of the Lake Basalt formed by hydrous differentiation; their compositions and observed phenocrysts were reproduced in 1 kbar, H2O-saturated melting experiments. Anorthite-rich plagioclase compositions of the lavas of the Lake Basalt necessitate crystallization from melts with between 4 and 6 wt% dissolved H2O. Phenocryst-rich lavas of the Lake Basalt, with 18 modal% phenocrysts and greater, formed by plagioclase accumulation in magmas similar to the phenocryst-poor lavas. This interpretation is supported by the depleted incompatible element abundances and enriched Sr/Zr ratio of the more porphyritic lavas relative to the phenocryst-poor lavas. We model the formation of the Lake Basalt as a two-stage process that combines a differentiation model and a plagioclase accumulation model. Stage one involved hydrous fractionation, granitic assimilation and mixing with undifferentiated parent magma. This process generated lavas with up to 19.2 wt% A12O3 and 7 modal% phenocrysts. In stage two, plagioclase accumulated in these liquids and produced more aluminous and porphyritic lavas with up to 21.8 wt% A12O3 and 33 modal% phenocrysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号