首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
在分析GAMIT水汽解算方案特点的基础上,利用云南6站地基GPS水汽探测资料,进行了不同解算方案计算结果的分析,并与GPS探空资料的PWV值进行比较,结果显示:不同解算方案对云南地基GPS水汽反演结果有显著的影响;在进行本地化后,GAMIT软件包对云南GPS水汽反演的精度有显著提高;不同季节的云南地基GPS反演水汽值与高精度探空水汽值的数值和变化趋势极为一致,二者的均方根差小于2 mm,说明该解算方案的地基GPS水汽反演结果可用.  相似文献   

2.
利用GPS的倾斜路径观测暴雨过程中的水汽空间分布   总被引:1,自引:0,他引:1  
毕研盟  毛节泰  李成才  符养 《大气科学》2006,30(6):1169-1176
介绍了地基全球定位系统 (GPS) 沿倾斜路径方向观测水汽总量 (SWV) 的原理和方法; 不同时间和不同地点的GPS SWV与微波辐射计反演的SWV符合较好, 误差在3 mm左右, 表明GPS可以较高的精度探测SWV.计算了区域GPS观测网在一次暴雨过程中不同空间方位上的水汽观测结果, 为消除不同路径对SWV的影响, 把SWV转化为天顶方向的值VSWV; 分析了同一GPS站点对不同卫星方向VSWV的变化情况, 以及不同GPS站点对同一个卫星方向VSWV的关系.结果表明, 区域GPS观测网中倾斜路径观测可较好地探测不同方位上水汽的分布和变化; SWV相对于天顶方向的大气水汽总量PW而言, 能更好地代表真实大气水汽分布; 在探空或卫星观测等传统观测手段无法探测的情况下, GPS SWV数据可提供中小尺度暴雨结构中水汽分布和变化状况等有用信息.  相似文献   

3.
简要介绍了利用GPS技术计算大气可降水量的原理及方法,以西宁GPS水汽站为例介绍了利用GAMIT软件对大气可降水量的反演流程,利用西宁站观测数据计算了有地面气象数据参与解算和无地面气象数据参与解算的大气可降水量结果,并对两种反演结果进行了对比分析,得出两种计算结果相近、具有很好的相关性,相关系数为0.921,两种反演结果在数值上最大相差5mm、平均相差1.54mm,在总体趋势上两者一致。分析了GPS技术计算大气可降水量的误差,其中地面气象要素对计算结果有重要作用,但影响不大,在不需要精度太高的计算结果及没有条件获得地面气象数据时,可以直接用GAMIT对大气可降水量进行解算,这为探测大气可降水量提供了一种可行的方法。  相似文献   

4.
地基GPS遥感大气水汽含量及在气象上的应用   总被引:14,自引:4,他引:10  
简单介绍了地基GPS遥感大气水汽含量的原理以及GPS反演水汽信息的种类,比较了两种GPS数据解算水汽策略,分析了在解算过程中影响GPS水汽精度的因子。最后简述了GPS水汽在气象上应用的进展,并提出了以后需努力的方向。  相似文献   

5.
地基GPS斜路径水汽反演技术及资料应用初探   总被引:5,自引:3,他引:2  
万蓉  付志康  李武阶  陈波  于胜杰  邹倩 《气象》2015,41(4):447-455
斜路径水汽总量(Slant path Water Vapor, SWV)包含了一定的水汽非各向同性空间分布信息,是区域地基全球定位系统(Global Positioning System, GPS)网进行三维水汽层析的主要数据源;测站所得到的SWV时间序列,直观地反映接收机测站周边水汽的不均匀分布和动态变化特征。采用天顶可降水汽总量(Precipitable Water Vapor, PWV)反演技术,以及湿映射函数构建、大气水平梯度模型构建、残差处理等技术,建立斜路径水汽总量解算算法。通过同步并址观测的1141个样本比较,在高仰角区间,GPS与微波辐射计对斜路径方向上水汽总量的观测平均偏差5.8 mm,均方差4.4 mm。在结合雷达、微波辐射计等观测对暴雨个例的综合分析中,SWV系列时序产品能较好地表现测站周边水汽堆积和降水发生后的水汽减少等细微特征。SWV作为一种新的观测产品,为天气分析提供了能反映测站周边水汽的分布状况的新信息,为强对流天气预警预报和机理分析提供新的研究角度。  相似文献   

6.
介绍全球定位系统(GPS)地基遥感水汽的基本原理和方法;水汽解算的三类基本资料条件,即GPS原始观测资料、匹配的气象观测资料、GPS水汽解算参数资料;西安地基GPS水汽解算系统技术基础和架构。系统由资料传输转换前处理、水汽解算核心、后处理产品显示三大模块组成。利用GPS水汽反演资料,分析西安2010年降水天气过程,归纳出峰点前置、喇叭口、锥形、大值区相近等特征,可应用于天气分析与预报业务中。  相似文献   

7.
地基GPS技术已被公认为观测大气水汽的最具潜力手段,而天顶湿延迟(ZWD)是地基GPS解算高精度水汽的关键量。瑞士伯尔尼大学天文研究所开发的BERNESE软件在解算天顶湿延迟方面独树一帜。以香港地基GPS连续运行参考站数据为解算实例,详细介绍了BERNESE软件解算ZWD的基本步骤和相关设置,并对有气象观测文件、数据跨天、跨周和定点解算ZWD情况的特殊设置进行了研究,结果表明BERNESE软件完全胜任ZWD解算工作。  相似文献   

8.
黄振  梁宏  黄艇 《气象科技》2013,41(1):83-87
简要概述基于GAMIT开发的大连地区地基GPS水汽自动处理系统的总体结构,设计思路,以及具体实现过程;还对系统反演的水汽资料进行精度检验以及误差分析,并介绍了系统反演水汽的质量控制方法,运行中常见故障的处理方法和日常业务中应用情况.初步应用结果表明:系统可用于解算地基GPS观测数据,获取高时空分辨率的水汽资料,用于天气分析和预报.系统具有解算精度高、运行稳定、自动化程度高等特点,具有很好的推广价值和业务使用价值.  相似文献   

9.
利用静态PPP(精密单点定位)处理稳定的GNSS地面站可以高精度反演大气中的水汽含量.对于运动的载体,静态PPP无法正确地估计待估参数.利用动态PPP数据处理方法,在解算载体动态位置的同时,可以估计动态载体GNSS的天顶总延迟,并在此基础上计算水汽含量.分别利用PPP动态和静态模型解算3.5 h的稳定可靠GNSS参考站数据,结果表明,动态PPP与静态PPP利用稳定CORS站解算大气可降水量(PWV)时,最大差别为6.6 mm,且水汽的变化趋势基本一致.在快速运动平台下,旋转平台解算的PWV与相同环境下的CORS站解算的水汽结果在量级上一致,但并不能像CORS站结果一样可以反映出水汽的变化趋势.针对地震等GNSS台站失稳问题,分别利用动态、静态PPP进行水汽的提取,结果表明,地震的短期形变对PPP水汽的提取无明显影响.建议使用静态PPP对失稳GNSS台站进行水汽提取.  相似文献   

10.
地基GPS在暴雨预报中的应用进展   总被引:11,自引:5,他引:11  
万蓉  郑国光 《气象科学》2008,28(6):697-702
加密的地基GPS全球定位系统网具备监测中小尺度天气水汽变化的功能.利用对流层延迟与水汽之间的关系,可以建立地基GPS水汽反演方法以获取大气可降水汽总量PWV和斜路径水汽含量SWV,并通过层析算法得到三维水汽分布.PWV的时间变率、PWV水平梯度变率和区域PWV水汽辐合辐散量定量反映了水汽输送以及区域水汽增减,PWV时间序列的初始峰值在暴雨临近预报中有重要的指示意义,地基GPS网的PWV可以作为数值天气预报模式的重要资料.不同指向的SWV可以表征测站周围水汽的非均匀性质,SWV和三维水汽层析可有效用于中小尺度天气的湿度分析和降水的定量预测.结合掩星GPS和其他探测信息,GPS/MET可以在暴雨监测预报中发挥更重要的作用.  相似文献   

11.
海南GPS网探测对流层水汽廓线的试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
介绍了2005年11月在海南地区进行的一次地基GPS小网观测试验。试验目的是研究利用组网的GPS倾斜路径观测进行对流层水汽层析反演, 给出站点上空水汽的垂直廓线结构信息。概述了试验中GPS原始数据处理方法以及层析反演的方法。将GPS层析得到的水汽垂直廓线与海口站探空观测的水汽廓线进行了对比, 结果表明:二者一致性较好, 均方根误差在0.5g·m-3左右, 层析结果较好地反映出试验期间水汽减少、大气变干的过程。另外, 采用3种不同的先验信息方案测试分析了GPS层析的结果, 表明GPS观测量对水汽先验信息有明显的调整作用。并对GPS水汽层析中可能存在的问题进行了讨论。试验证明高时间分辨率的GPS观测有能力层析出GPS测站上空水汽的廓线信息。  相似文献   

12.
基于观测约束的地基犌犘犁三维水汽层析技术研究   总被引:1,自引:0,他引:1  
全球定位系统(GPS)卫星信号穿过大气层时发生的偏折和延迟,可以用来反演信号传播路径上的大气水汽总量。为获取区域高精度的大气水汽三维分布,借助分布密集的地基GPS观测网及其斜路径水汽观测,建立新的观测约束层析模型,提出以高斯函数为水平约束,区域逐月多年探空观测为垂直约束,即以平均量为先验值,以标准偏差为权重矩阵的新方法;并在层析算法中引入地面观测,以提高整体尤其是低层反演精度。三维水汽层析网格模型基于长江中游鄂东区域的22站地基GPS加密网搭建,实时解算系统可逐时输出三维水汽产品。三维湿折射度和水汽密度可以分别由斜路径的湿延迟总量和水汽总量观测反演获得。以2010年开展的汛期联合加密探空观测为参照,对三维层析的总体反演精度、低层反演精度、层析区域中心与边缘反演精度进行了对比和分析。结果显示:整体样本检验三维水汽密度平均偏差为-0.63 g/m~3,标准偏差为1.22 g/m~3,与探空相关系数为0.98;水汽密度与探空资料的相关比湿折射度与探空资料的相关好;对于不同层析区域,中心区域观测元数量较为丰富,使得位于中心的层析精度好于整体和边缘;加入低层观测的层析结果与探空的相关比未加低层观测时的好,低层观测的加入提高了层析与探空的相关,减小了低层层析标准差、区域中心和2 km以上层析的均差,有效提高了反演精度;低层观测的加入对整体标准差的影响,可能与加剧观测方程中长度矩阵元素间的量级差异有关。  相似文献   

13.
利用地基GPS测量大气水汽廓线的方法   总被引:6,自引:2,他引:6  
GPS倾斜路径的湿延迟反映了大气中水汽的三维非均匀分布,通过准确确定空间各卫星对地面各接收机的倾斜路径湿延迟,就可以利用断层扫描技术,确定大气层中水汽的三维分布和变化,从而增加目前还相对缺乏的大气水汽探测。文章就这方面介绍了国际上利用地基GPS测量倾斜路径大气湿延迟的两类方法(单点定位方法和双差定位方法)以及应用断层扫描技术利用这些观测进行水汽廓线遥感探测的两类方法(附加约束法和卡尔曼滤波法),并对这些方法的优缺点进行了初步的比较和探讨。  相似文献   

14.
青藏高原大气总水汽量的反演研究   总被引:2,自引:11,他引:2  
利用2001年青藏高原89个气象站资料、NCEP格点再分析资料以及2001—2003年7月3个地基GPS站的大气总水汽量观测资料,对GPS遥感的大气总水汽量与探空观测结果做了比较,研究了大气总水汽量变化对降雨形成的影响,大气总水汽量与地面水汽压的关系,分析了青藏高原大气总水汽量的时空变化特征及其成因。结果表明:GPS遥感的大气总水汽量与探空观测结果吻合得较好,2001年那曲站两种结果相比均方根误差仅0.15 cm;大气总水汽量与地面水汽压之间有良好的相关关系;不同季节高原上基本都存在3个明显的大气总水汽量高值中心:即东南部、西南部和西北部;高原大气总水汽量分布的季节变化与500 hPa风场及整层大气水汽通量的变化关系密切。  相似文献   

15.
Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1–2mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.  相似文献   

16.
将IGS发布的超快星历与最终星历中卫星的坐标及钟差进行对比,初步验证IGS超快星历的精度。在此基础上,以美国国家海洋和大气局ARM实验中GPS连续运行参考站一周的观测数据作为实验对象,利用Bernese软件分别使用IGS最终星历以及超快星历进行GPS反演大气水汽含量的数据解算,将得到的基线精度以及对流层延迟值进行对比,结果表明采用最终星历和超快星历得到的基线精度基本相同,但对流层延迟值相差较大,并且差值较大的时刻一般出现在超快星历的外推时刻,并随着外推时间的增加逐渐增大。为此,本文设计了滑动式动态星历选择方案,通过实验验证,该优化方案能有效的提高近实时对流层延迟解算精度,满足GPS近实时反演大气水汽的精度要求。  相似文献   

17.
段晓梅  曹云昌 《气象》2018,44(12):1575-1582
北斗地基增强系统是我国北斗卫星导航系统重要的地面基础设施,它可以获取高精度、高时间分辨率的水汽产品,满足数值预报、空间天气监测和预警业务的需求。本文利用2017年北斗地基增强系统中北斗单模、GPS单模和GPS+BD双模的数据资料,对同址的北斗气象站、GPS气象站和探空站反演大气可降水量进行对比分析,结果表明:(1)现行北斗地基增强系统所提供的数据,可以有效地用来反演大气柱总水汽含量,所得结果合理,平均偏差都小于1 mm,在变化上与GPS系统和探空系统基本一致,对数值预报有一定的指示作用;(2)与GPS系统相比,GPS单模/PWV和GPS+BD双模/PWV的均方差小于2 mm,相关系数均在0. 97以上,表明两者在反演PWV的精度上与GPS系统相当,而北斗单模/PWV的均方差为3~6 mm,相对方差达到了15%~20%,其精度与GPS系统还有一定的差距;(3)与探空相比,北斗单模在个别时次变化趋势上存在不一致的情况,其均方差为2. 14~6. 12 mm,相对方差为15. 32%~20. 84%,其误差可能是由于探测系统误差等因素造成的,而GPS+BD双模和GPS单模会更加稳定。  相似文献   

18.
1 INTRODUCTION As shown by much domestic and overseas study, the GPS technique can be used as a novel, efficient means in the measurement of water vapor. It increases the density of existing sounding sites both temporally and spatially and is useful in the remote sensing of regional and global content of water vapor[1]. The principle with which the GPS works in water vapor remote sensing is as follows[2]. While they are travelling to the receivers, GPS satellite signals are delayed in …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号