首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper describes the STAROX stellar evolution code for the calculation of the evolution of a model of a spherical star. The code calculates a model at time t k , that is the run of pressure, density, temperature, radius, energy flux and related variables on a mesh in mass M i , given the distribution of chemical elements X j (i) at t k and the model at the previous time step t k?1. It then advances the chemical composition to the next time step t k+1 and calculates a new model at time t k+1. This process is iterated to convergence. The model equations are solved by Newton–Raphson relaxation; the chemical equations are solved by an iterative procedure, each element being advanced in turn, and the process repeated to convergence. Convection is modelled by a mixing length model and convective mixing is treated as a diffusive process; chemical overshooting can be incorporated in parametric form. The equation of state is taken from OPAL tables and the opacity from a blend of OPAL and Alexander tables. Nuclear reaction rates are from NACRE but only cover the pp chain and CNO cycle. The atmospheric layers are incorporated in the model by applying the surface boundary condition at small optical depth (τ≈0.001). The mesh in mass M i is usually taken as fixed except that there is a moveable mesh point at the boundary of a convective core. Results are given for models of mass 0.9 and 5.0M with initial composition X=0.7,Z=0.02 evolved to a state where the central hydrogen abundance is X c =0.35, and for a model of mass 2.0M with initial X=0.72,Z=0.02, evolved to X c =0.01 and with core overshooting. In this latter case we compute two models one with and one without a moveable mesh point at the boundary of the convective core to illustrate the importance of having such a moveable mesh point for the determination of the Brunt–Väisälä frequency in the layers outside the core.  相似文献   

3.
4.
The cesam code is a consistent set of programs and routines which perform calculations of 1D quasi-hydrostatic stellar evolution including microscopic diffusion of chemical species and diffusion of angular momentum. The solution of the quasi-static equilibrium is performed by a collocation method based on piecewise polynomials approximations projected on a B-spline basis; that allows stable and robust calculations, and the exact restitution of the solution, not only at grid points, even for the discontinuous variables. Other advantages are the monitoring by only one parameter of the accuracy and its improvement by super-convergence. An automatic mesh refinement has been designed for adjusting the localisations of grid points according to the changes of unknowns. For standard models, the evolution of the chemical composition is solved by stiffly stable schemes of orders up to four; in the convection zones mixing and evolution of chemical are simultaneous. The solution of the diffusion equation employs the Galerkin finite elements scheme; the mixing of chemicals is then performed by a strong turbulent diffusion. A precise restoration of the atmosphere is allowed for.  相似文献   

5.
This paper describes the OSCROX stellar oscillation code for the calculation of the adiabatic oscillations of low degree ? of a spherical star. There are two principal versions: one in Lagrangian variables (oscroxL), the second in Eulerian variables (oscroxE). The Lagrangian code does not require values of the Brunt Väisälä frequency or equivalently the density gradient. For ?=1 the oscillation equations have both an exact integral and an exact partial wave solution, and codes oscroxL1 and oscroxE1 incorporate these exact solutions. The difference in the frequencies obtained with the various codes gives some estimate of the uncertainty in the results due both to limited accuracy of hydrostatic support of the stellar model, and the limited accuracy of the integration of the oscillation equations. We compare the results of the different methods by calculating the frequencies in the range 20–2500 μHz of a model of a 1.5 M main-sequence star (ModelJC) kindly provided by J. Christensen-Dalsgaard for the purposes of cross comparison of codes, a modified version of this model (ModelJCA) with improved hydrostatic support, and of a highly accurate n=3 polytropic model of a star with the same mass and radius. For the polytropic model the frequencies as calculated by all codes agree to within 0.001 μHz, whereas for the 1.5 M main sequence model the frequency differences reach a maximum of 0.04 μHz, due primarily to the limited accuracy of hydrostatic support in the model; this is reduced to 0.01 μHz for ModelJCA.  相似文献   

6.
We summarize the main physical assumptions and numerical procedures adopted by the FRANEC code to compute stellar models in all the evolutionary phases at hydrostatic and thermal equilibrium. An application to the Standard Solar Model is also briefly presented.  相似文献   

7.
A first-order perturbation theory method developed by Goossens to determine the perturbation to the eigenfrequencies of stellar models caused by the presence of a magnetic field is modified slightly, and applied to models with toroidal and poloidal fields. Some limitations of the analysis are pointed out.  相似文献   

8.
9.
We present a new stellar evolution code and a set of results, demonstrating its capability at calculating full evolutionary tracks for a wide range of masses and metallicities. The code is fast and efficient, and is capable of following through all evolutionary phases, without interruption or human intervention. It is meant to be used also in the context of modelling the evolution of dense stellar systems, for performing live calculations for both normal star models and merger products.
The code is based on a fully implicit, adaptive-grid numerical scheme that solves simultaneously for structure, mesh and chemical composition. Full details are given for the treatment of convection, equation of state, opacity, nuclear reactions and mass loss.
Results of evolutionary calculations are shown for a solar model that matches the characteristics of the present sun to an accuracy of better than 1 per cent; a  1 M  model for a wide range of metallicities; a series of models of stellar Populations I and II, for the mass range 0.25 to  64 M  , followed from pre-main-sequence to a cool white dwarf or core collapse. An initial–final mass relationship is derived and compared with previous studies. Finally, we briefly address the evolution of non-canonical configurations, merger products of low-mass main-sequence parents.  相似文献   

10.
11.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

12.
We present grids of stellar models and their associated oscillation frequencies that have been used by the CoRoT Seismology Working Group during the scientific preparation of the CoRoT mission. The stellar models have been calculated with the CESAM stellar internal structure and evolution code while the oscillation frequencies have been obtained from the CESAM models by means of the ADIPLS adiabatic oscillation programme. The grids cover a range of masses, chemical compositions and evolutionary stages corresponding to those of the CoRoT primary targets. The stellar models and oscillation frequencies are available on line through the Evolution and Seismic Tools Activity (ESTA) web site.  相似文献   

13.
This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars.We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.  相似文献   

14.
We investigate whether the rotational splittings of β Cephei stars can give some clue about the existence of a differential rotation in latitude, and if they are contaminated by the cubic order effects of rotation on oscillation frequencies. We also study some properties of splitting asymmetries and axisymmetric mode frequencies which provide seismic constrains on the distortion of the star. We find that only non-perturbative methods are able to reproduce those two seismic characteristics within 0.01% error bars for stars when they rotate faster than 3.3%Ω k . If error bars of 1% are acceptable, the threshold of validity of perturbative methods is extended to 10%Ω k .  相似文献   

15.
16.
《New Astronomy》2003,8(4):337-370
We summarize the main results from MODEST-1, the first workshop on MOdeling DEnse STellar systems. Our goal is to go beyond traditional population synthesis models, by introducing dynamical interactions between single stars, binaries, and multiple systems. The challenge is to define and develop a software framework to enable us to combine in one simulation existing computer codes in stellar evolution, stellar dynamics, and stellar hydrodynamics. With this objective, the workshop brought together experts in these three fields, as well as other interested astrophysicists and computer scientists. We report here our main conclusions, questions and suggestions for further steps toward integrating stellar evolution and stellar (hydro)dynamics.  相似文献   

17.
The classification of adiabatic modes of non-radial stellar oscillation was established by Cowling in 1941. In addition to acoustic and gravity modes he identified an intermediate mode, which he labelled the f mode, and which in simple stellar models has no radial node. The motion of a dipolar f mode (of spherical-harmonic degree l =1) shifts the centre of mass, and must have zero frequency. On the other hand, if the perturbation to the gravitational potential is neglected (the case considered by Cowling) the f mode has a frequency intermediate between those of the gravity and acoustic modes; this is true of modes of any degree ( l ≥1) . Here we consider the properties of the dipolar f mode, elucidating the origin of these differences through continuous transformations between the various relevant cases; in addition, we discuss the broader issues of the classification of modes of non-radial oscillation.  相似文献   

18.
Granada oscillation code (GraCo) is a software constructed to compute adiabatic and non-adiabatic oscillation eigenfunctions and eigenvalues. The adiabatic version gives the standard numerical resolution, and also the Richardson extrapolation, different sets of eigenfunctions, different outer mechanical boundary conditions or different integration variables. The non-adiabatic version can include the atmosphere-pulsation interaction. The code has been used for intensive studies of δ Scuti, γ Doradus, β Ceph., SdO and, SdB stars. The non adiabatic observables “phase-lag” (the phase between the effective temperature variations and the radial displacement) and ${\delta T_{\mathrm{eff}}\over T_{\mathrm{eff}}}$ (relative surface temperature variation) can help to the modal identification. These quantities together with the energy balance (“growth rate”) provide useful additional information to the adiabatic resolution (eigenfrequencies and eigenfunctions).  相似文献   

19.
20.
A discussion of how the fact that the central star evolves while the planetary nebula is forming affects the formation of the nebula. Numerical models point to a number of effects, such as more efficient shaping in the early phases and the formation of a surrounding shell. It is also found that for identical initial density distributions, quickly evolving (more massive) stars will form bipolar PNs and more slowly evolving stars will form elliptical PNs.Physics Dept. UMIST Manchester UK  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号