首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SGR J1745-2900 is a magnetar near the Galactic center. X-ray observations of this source found a decreasing X-ray luminosity accompanied by an enhanced spindown rate. This negative correlation between X-ray luminosity and spindown rate is hard to understand. The wind braking model of magnetars is employed to explain this puzzling spindown behavior. During the release of magnetic energy of magnetars,a system of particles may be generated. Some of these particles remain trapped in the magnetosphere and may contribute to the X-ray luminosity. The rest of the particles can flow out and take away the rotational energy of the central neutron star. A smaller polar cap angle will cause the decrease of X-ray luminosity and enhanced spindown rate of SGR J1745-2900. This magnetar is shortly expected to have a maximum spindown rate.  相似文献   

2.
Magnetars are a type of pulsars powered by magnetic field energy. Part of the X-ray luminosities of magnetars in quiescence have a thermal origin and can be fitted by a blackbody spectrum with the surface temperature, much higher than the typical values for rotation-powered pulsars. The persistent thermal emissions and bursts of magnetars indicate the presence of some internal heat sources in their outer crusts. In this work, we have formulated the energy balance equation and applied it to investigate the thermal evolution in the magnetar crust, taking into account the heating mechanisms of Ohmic decay and electron capture processes. This model can explain the changes in the X-ray luminosity of the magnetars.  相似文献   

3.
The gamma-ray burst GR170817 A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out.However, the luminosity and energetics of GRB 170817 A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817 A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.  相似文献   

4.
We study the electromagnetic radiation from a newborn magnetar whose magnetic tilt angle decreases rapidly. We calculate the evolution of the angular spin frequency, the perpendicular component of the surface magnetic field strength, and the energy loss rate through magnetic dipole radiation. We show that the spin-down of the magnetar experiences two stages characterized by two different timescales. The apparent magnetic field decreases with the decrease of the tilt angle. We further show that the energy loss rate of the magnetar is very different from that in the case of a fixed tilt angle. The evolution of the energy loss rate is consistent with the overall light curves of gamma-ray bursts which show a plateau structure in their afterglow stage. Our model supports the idea that some gamma-ray bursts with a plateau phase in their afterglow stage may originate from newborn millisecond magnetars.  相似文献   

5.
We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (   B ≳ 1014  G) non-accreted and accreted outermost envelopes composed of different elements, from iron to hydrogen or helium. We discuss a combined effect of thermal conduction and neutrino emission in the outer neutron star crust and calculate the cooling of magnetars with a dipole magnetic field for various locations of the heat layer, heat rates and magnetic field strengths. Combined effects of strong magnetic fields and light-element composition simplify the interpretation of magnetars in our model: these effects allow one to interpret observations assuming less extreme (therefore, more realistic) heating. Massive magnetars, with fast neutrino cooling in their cores, can have higher thermal surface luminosity.  相似文献   

6.
Based on the magnetar model, we have studied in detail the processes of neutrino cooling of an electron-positron plasma generating an SGR giant flare and the influence of the magnetar magnetic field on these processes. Electron-positron pair annihilation and synchrotron neutrino emission are shown to make a dominant contribution to the neutrino emissivity of such a plasma. We have calculated the neutrino energy losses from a plasma-filled region at the long tail stage of the SGR 0526-66, SGR 1806–20, and SGR 1900+14 giant flares. This plasma can emit the energy observed in an SGR giant flare only in the presence of a strongmagnetic field suppressing its neutrino energy losses. We have obtained a lower bound on the magnetic field strength and showed this value to be higher than the upper limit following from an estimate of the magnetic dipole losses for the magnetars being analyzed in a wide range of magnetar model parameters. Thus, it is problematic to explain the observed energy release at the long tail stage of an SGR giant flare in terms of the magnetarmodel.  相似文献   

7.
We consider the electron—positron plasma generation processes in the magnetospheres of magnetars—neutron stars with strong surface magnetic fields, B ? 1014–1015 G. We show that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of γ-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the \(P - \dot P\) diagram that defines the plasma generation threshold in a magnetar magnetosphere.  相似文献   

8.
I question models for powering super energetic supernovae (SESNe) with a magnetar central engine that do not include jets that are expected to be launched by the magnetar progenitor. I show that under reasonable assumptions the outflow that is expected during the formation of a magnetar can carry an amount of energy that does not fall much below, and even surpasses, the energy that is stored in the newly born spinning neutron star (NS). The rapidly spinning NS and the strong magnetic fields attributed to magnetars require that the accreted mass onto the newly born NS possesses high specific angular momentum and strong magnetic fields. These ingredients are expected, as in many other astrophysical objects, to form collimated outflows/jets. I argue that the bipolar outflow in the pre-magnetar phase transfers a substantial amount of energy to the supernova (SN) ejecta, and it cannot be ignored in models that attribute SESNe to magnetars. I conclude that jets launched by accretion disks and accretion belts are more likely to power SESNe than magnetars are. This conclusion is compatible with the notion that jets might power all core collapse SNe (CCSNe).  相似文献   

9.
Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods.About 30 magnetars and magnetar candidates known currentl...  相似文献   

10.
Emission spectra from magnetars in the soft X-ray band likely contain a thermal component emerging directly from the neutron star (NS) surface. However, the lack of observed absorption-like features in quiescent spectra makes it difficult to directly constrain physical properties of the atmosphere. We argue that future X-ray polarization measurements represent a promising technique for directly constraining the magnetar magnetic field strength and geometry. We construct models of the observed polarization signal from a finite surface hotspot, using the latest NS atmosphere models for magnetic fields   B = 4 × 1013–5 × 1014 G  . Our calculations are strongly dependent on the NS magnetic field strength and geometry, and are more weakly dependent on the NS equation of state and atmosphere composition. We discuss how the complementary dependencies of phase-resolved spectroscopy and polarimetry might resolve degeneracies that currently hamper the determination of magnetar physical parameters using thermal models.  相似文献   

11.
Among the dozen known magnetar candidates, there are no binary objects. Given that the fraction of binary neutron stars is estimated to be about 3–10 per cent, it is reasonable to address the question of solitarity of magnetars, to estimate theoretically the fraction of binary objects among them, and to identify the most probable companions. We present population synthesis calculations of massive binary systems. In this study, we adopt the hypothesis that magnetic field of a magnetar is generated at the protoneutron star stage due to a dynamo mechanism, so rapid rotation of the core of a progenitor star is essential. Our goal is to estimate the number of neutron stars originated from progenitors with enhanced rotation. In our calculations, the fraction of neutron stars originating from such progenitors is about 8–9 per cent. This should be considered as an upper limit to the fraction of magnetars, as some of the progenitors can lose momentum. Most of these objects are isolated due to coalescences of components prior to neutron star formation, or due to system disruption after the second supernova explosion. The fraction of such neutron stars in surviving binaries is about 1 per cent or lower. Their most numerous companions are black holes.  相似文献   

12.
In this paper, we consider the effect of Landau levels on the decay of superhigh magnetic fields of magnetars. Applying 3 P 2 anisotropic neutron superfluid theory yield a second-order differential equation for a superhigh magnetic field B and its evolutionary timescale t. The superhigh magnetic fields may evolve on timescales ∼(106–107) yrs for common magnetars. According to our model, the activity of a magnetar may originate from instability caused by the high electron Fermi energy.  相似文献   

13.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

14.
In this paper, we modify our previous research carefully, and derive a new expression of electron energy density in superhigh magnetic fields. Based on our improved model, we re-compute the electron capture rates and the magnetic fields’ evolutionary timescales t of magnetars. According to the calculated results, the superhigh magnetic fields may evolve on timescales ~(106?107) yrs for common magnetars, and the maximum timescale of the field decay, t≈2.9507×106 yrs, corresponding to an initial internal magnetic field B 0=3.0×1015 G and an initial inner temperature T 0=2.6×108 K. Motivated by the results of the neutron star-supernova remnant (SNR) association of Zhang and Xie (2011), we calculate the maximum B 0 of magnetar progenitors, B max~(2.0×1014?2.93×1015) G when T 0=2.6×108 K. When T 0~2.75×108?1.75×108 K, the maximum B 0 will also be in the range of ~1014?1015 G, not exceeding the upper limit of magnetic field of a magnetar under our magnetar model. We also investigate the relationship between the spin-down ages of magnetars and the ages of their SNRs, and explain why all AXPs associated with SNRs look older than their real ages, whereas all SGRs associated with SNRs appear younger than they are.  相似文献   

15.
This paper focuses on neutron stars (NS) of the magnetar type inside massive binary systems. We determine the conditions under which the matter from the stellar wind can penetrate the inner magnetosphere of the magnetar. At a certain distance from the NS surface, the magnetic pressure can balance the gravitational pressure of the accreting matter, creating a very turbulent, magnetized transition region. It is suggested that this region provides good conditions for the acceleration of electrons to relativistic energies. These electrons lose energy due to the synchrotron process and inverse Compton (IC) scattering of the radiation from the nearby massive stellar companion, producing high-energy radiation from X-rays up to ∼TeV γ-rays. The primary γ-rays can be further absorbed in the stellar radiation field, developing an IC  e±  pair cascade. We calculate the synchrotron X-ray emission from primary electrons and secondary  e±  pairs and the IC γ-ray emission from the cascade process. It is shown that quasi-simultaneous observations of the TeV γ-ray binary system LSI +61 303 in the X-ray and TeV γ-ray energy ranges can be explained with such an accreting magnetar model.  相似文献   

16.
The spin of central black holes with intermediate masses in globular clusters is determined using the well known relationship between the kinetic power of a relativistic jet and the observed radio luminosity of the region closest to a central black hole. The estimate of the magnitude of the spin is based on the known Blandford-Znajek mechanism. The magnetic field near the event horizon of a black hole is determined using a magnetic coupling mechanism that assumes equality between the densities of the magnetic and kinetic energies of the accreting gas (the Magnetic Coupling Model). The rate of accretion [(M)\dot] \dot{M} is derived on the basis of the Bondi-Hoyle mechanism.  相似文献   

17.
Two classes of high-energy sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars are believed to contain slowly spinning “magnetars,” i.e. neutron stars the emission of which derives from the release of energy from their extremely strong magnetic fields (>1015 G). The enormous energy liberated in the 2004 December 27 giant flare from SGR 1806-20 (~5×1046 erg), together with the likely recurrence time of such events, points to an internal magnetic field strength of ≥1016 G. Such strong fields are expected to be generated by a coherent α?Ω dynamo in the early seconds after the Neutron Star (NS) formation, if its spin period is of a few milliseconds at most. A substantial deformation of the NS is caused by such fields and, provided the deformation axis is offset from the spin axis, a newborn millisecond-spinning magnetar would thus radiate for a few days a strong gravitational wave signal the frequency of which (~0.5–2 kHz range) decreases in time. This signal could be detected with Advanced LIGO-class detectors up to the distance of the Virgo cluster, where ≥1 yr?1 magnetars are expected to form. Recent X-ray observations revealed that SNRs around magnetar candidates do not appear to have received a larger energy input than in standard SNRs (see Vink and Kuiper, Mon. Not. Roy. Astron. Soc. 319, L14 (2006)). This is at variance with what would be expected if the spin energy of the young, millisecond NS were radiated away as electromagnetic radiation and/or relativistic particle winds. In fact, such energy would be transferred quickly and efficiently to the expanding gas shell. This may thus suggest that magnetars did not form with the expected very fast initial spin. We show here that these findings can be reconciled with the idea of magnetars being formed with fast spins, if most of their initial spin energy is radiated through GWs. In particular, we find that this occurs for essentially the same parameter range that would make such objects detectable by Advanced LIGO-class detectors up to the Virgo Cluster. If our argument holds for at least a fraction of newly formed magnetars, then these objects constitute a promising new class of gravitational wave emitters.  相似文献   

18.
By means of the Monte Carlo method, we simulate the evolutionary distribution of accreting neutron stars (NSs) in the magnetic field versus spin period (B‐P) diagram where the accretion induced magnetic‐field decay model is exploited. The simulated results show that by mass accretion the B‐P distribution of the accreting NS would evolve along the equilibrium period line to a region with low field and short period. The B‐P distributions of the simulated accreting NSs are consistent with those of the observed millisecond pulsars (MSPs) after accretion of ∼ 0.1–0.2 M⊙. We also test the effects of the initial magnetic field and the spin period on the evolved B‐P distribution of the accreting NSs. It is shown that the evolved distributions of the simulated samples are independent of the selection of the initial condition when the NS magnetic field decays to a value less than ∼1010 G. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The X-ray afterglows of GRBs 060413, 060522, 060607A and 080330 are characterized by a plateau followed by a very sharp drop. The plateau could be explained within the framework of the external forward shock model but the sharp drop can not.We interpret the plateau as the afterglows of magnetized central engines, plausibly magnetars. In this model, the X-ray afterglows are powered by the internal magnetic energy dissipation and the sudden drop is caused by the collapse of the magnetar. Accordingly,the X-ray plateau photons should have a high linear polarization, which can be tested by future X-ray polarimetry.  相似文献   

20.
Based on the work of Wang et al. (Chin. Phys. Lett. 29:049701, 2012), we re-investigated electron capture on iron group nuclei in the outer crust of magnetars and studied magnetar evolution. Effects of ultra-strong magnetic field on electron capture rates for 57Co have been analyzed in the nuclear shell model and under the Landau-level-quantization approximation, and the electron capture rates and the neutrino energy loss rates on iron group nuclei in the outer crust of magnetar have been calculated. The results show that electron capture rates on 57Co are increase greatly in the ultra-strong magnetic field, and above 3 orders of magnitude generally; and the neutrino energy loss rates by electron capture on iron group nuclei increase above 3 orders of magnitude in the range from B=4.414×1013 G to B=4.414×1015 G. These conclusions play an important role in future studying the evolution of magnetar. Furthermore, we modify the expressions of the electron chemical potential (Fermi energy) and phase space factor by introducing Dirac δ-function, and select appropriate parameters of temperature T, magnetic field B and matter density ρ in the our crust, thus our results will be reliable than those of Wang et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号