首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intense solar X-ray burst occurred on April 1, 1981. X-ray images of this gradual hard X-ray burst were observed with the hard X-ray telescope aboard the Hinotori satellite for the initial ten minutes of rise and maximum phases of the burst. The hard X-ray images (13–29 keV) look like a large loop without considerable time variation of an elongated main source during the whole observation period. The main X-ray source seems to lie along a ridge of a long coronal arcade 2 × 104 km above a neutral line, while a tangue-like sub-source may be another large coronal loop although the whole structure of the X-ray source looks like a large semi-circular loop. Both nonthermal and hot thermal (3–4 × 107 K) electrons are contributing to the source image. The ratio of these components changed in a wide range from 2.3 to 0.4 during the observation, while the image was rather steady. It suggests that both heating and accelerations of electrons are occurring simultaneously in a common source. Energetic electrons of 15–30 keV would be collisionally trapped in the coronal magnetic loops with density of the order of 1011 cm–3.  相似文献   

2.
A numerical simulation has been made for the dynamics of non-thermal electrons (> 10keV) injected with spatial, temporal and velocity distributions into a model coronal loop. The time variations of the spatial intensity distribution and the spectrum for the expected hard X-rays are computed for many models in order to find the important physical parameters for those characteristics.The most important one is the column density of plasma, CD, along the loop. If CD is smaller than 1020 cm–2, the expected X-rays behave like the solar impulsive hard X-ray bursts, that is the spatial maximum of X-rays shifts to the top of the loop in the later phase of the burst accompanying a spectral softening. On the other hand, if CD is greater than this value, quasi-steady decay appears in the later phase. In this case the intensity distribution of X-rays above about 20 keV along the loop shows a broad maximum away from the loop top giving an extended spatial distribution of hard X-rays, and spectral hardness is kept constant. These characteristics are similar to the solar gradual hard X-ray bursts (the so-called extended burst which is not a hot thermal gradual burst).  相似文献   

3.
The solar burst event of 1992-06-07 is analyzed in this paper using HXR material of the Yohkoh satellite and radio data at 2840 MHz observed at Beijing Astronomical Observatory. The results show that during the impulsive phase, the pulsational component had two time scales, a longer one of about 30 s, and a shorter one of 1–4 s. The pulsations on the longer scale are found to be correlated with a series of variations in the HXR images of the source region. A physical picture comprising loop-loop interaction and MHD oscillation modulation is presented.  相似文献   

4.
A. O. Benz  S. R. Kane 《Solar physics》1986,104(1):179-185
Properties of electron acceleration in flares, especially the density structure in the acceleration region, are deduced from a correlation study between decimetric type III, spike, and hard X-ray (HXR) bursts. The high association rate found (71%) strongly suggests that spikes also originate from energetic electrons. Spikes and type III bursts have been found to be easily identified by their different polarizations. The two types of emission generally do not overlap in frequency. A reliable lower limit to the density is derived from the starting frequency of type III and U bursts. The spike emission very likely yields an upper limit. The density inhomogeneity in the acceleration region spans more than one order of magnitude and is more than one order of magnitude larger in the associated type U sources. A peak-to-peak correlation does not always exist between type III, spike and HXR bursts. This discrepancy can be interpreted in terms of the different source conditions and propagation properties. Whereas spikes need special conditions to become visible, type III and peaks of HXR may be the product of many elementary accelerations.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

5.
Observations of a radio burst at 8.6 mm wavelength on 1970 November 5, are described with the particular interest on the correspondence between radio and polarized X-ray events. The radio observations were carried out using an interferometer with a half power width of 2.9 at the Dept. of Physics, Nagoya University, and indicated that the location of the radio burst coincided with preceding sunspots and the size of the burst source must be very small, less than about 1. Mechanisms of radio and X-ray emissions are discussed briefly.  相似文献   

6.
X-ray radiation is used to study coronal phenomena in conjunction with meter wave observations during some large solar flares. It is found that metric flare continua and moving type IV bursts are associated with gradual and long lasting (a few tens of minutes) microwave and hard X-ray emissions. The detailed temporal analysis reveals that although metric and hard X-ray sources are located at very different heights, both kinds of emission result from a common and continuous/repetitive injection of electrons in the corona. The late part of the metric event (stationary type IV burst) is only associated with soft X-ray radiation. This indicates that the mean energy of the radiating electrons is lower during stationary type IV bursts than during the earlier parts of the event.  相似文献   

7.
Kaufmann  P.  Trottet  G.  Giménez de Castro  C.G.  Costa  J.E.R.  Raulin  J.-P.  Schwartz  R.A.  Magun  A. 《Solar physics》2000,197(2):361-374
We present an analysis of the time profiles detected during a solar impulsive flare, observed at one-millimeter radio frequency (48 GHz) and in three hard X-ray energy bands (25–62, 62–111, and 111–325 keV) with high sensitivity and time resolution. The time profiles of all emissions exhibit fast time structures of 200–300 ms half power duration which appear in excess of a slower component varying on a typical time scale of 10 s. The amplitudes of both the slow and fast variations observed at 48 GHz are not proportional to those measured in the three hard X-ray energy bands. However, the fast time structures detected in both domains are well correlated and occur simultaneously within 64 ms, the time resolution of the hard X-ray data. In the context of a time-of-flight flare model, our results put strong constraints on the acceleration time scales of electrons to MeV energies.  相似文献   

8.
9.
The gyro-synchrotron emission from a model source with a non-uniform magnetic field is computed taking into account the self absorption. This model seems adequate not only to interpret the radio spectrum and its time variation of microwave impulsive bursts but also to solve the discrepancy between the numbers of non-thermal electrons emitting radio burst and those emitting hard X-ray burst.The decrease of flux of radio burst with decreasing frequency at low microwave frequencies is due to the self absorption and/or the thermal gyro-absorption. In this frequency range, the radio source is optically thick even at weak microwave bursts. The weakness of the bursts may be rather due to the small size of the radio source and/or the weakness of the magnetic field than the small number density of the non-thermal electrons.The time variation of the flux of radio burst may be mainly attributed to the variation of source size in a horizontal direction ( direction) instead of the variation of the number density of non-thermal electrons itself, implying that the acceleration region progressively moves in the horizontal direction leaving the non-thermal electrons behind during the increasing phase of the radio burst.  相似文献   

10.
The intensity and frequency spectrum of gyro-synchrotron emission from energetic solar electrons radiating in coronal magnetic fields are calculated. These calculations, based on a recent study of the generation of gyro-synchrotron emission in a magnetoactive plasma, are applied to a Type IV radio burst originating at a high altitude in the solar corona. It is shown that the observed frequency spectrum of the burst, which exhibits very sharp low and high frequency cutoffs, can be best understood in terms of gyro-synchrotron emission in an ionized medium and that from the observed frequency spectrum and the ambient coronal density it is possible to deduce both the magnetic field at the site of the emission and the range of electron energies responsible for the burst.NAS-NASA Post-Doctoral Resident Research Associate.Research supported by the National Research Foundation under grant GP-849.  相似文献   

11.
A solar flare occurring on 26 February, 1981 at 19:32 UT was observed simultaneously in hard X-rays and microwaves with a time resolution of a fraction of a second. The X-ray observations were made with the Hard X-ray Monitor on Hinotori, and the microwave observations were made at 22 GHz with the 13.7 m Itapetinga mm-wave antenna. Timing accuracy was restricted to 62.5 ms, the best time resolution obtained in hard X-rays for this burst. We find that: (a) all 22 GHz flux structures were delayed by 0.2–0.9 s relative to similar structures in hard X-rays throughout the burst duration; (b) different burst structures showed different delays, suggesting that they are independent of each other; (c) the time structures of the degree of polarization at 22 GHz precede the total microwave flux time structures by 0.1–0.5 s; (d) The time evolutions of time delays of microwaves with respect to hard X-rays and also the degree of microwave polarization show fluctuations with are not clearly related to any other time structures. If we take mean values for the 32 s burst duration, we find that hard X-ray emission precedes the degree of microwave polarization by 450 ms, which in turn precedes the total microwave flux by 110 ms.  相似文献   

12.
We have studied the 1999 soft X-ray transient outburst of XTE J1859+226 at radio and X-ray wavelengths. The event was characterized by strong variability in the disc, corona and jet – in particular, a number of radio flares (ejections) took place and seemed well-correlated with hard X-ray events. Apparently unusual for the canonical 'soft' X-ray transient, there was an initial period of low/hard state behaviour during the rise from quiescence but prior to the peak of the main outburst – we show that not only could this initial low/hard state be a ubiquitous feature of soft X-ray transient outbursts, but also it could be extremely important in our study of outburst mechanisms.  相似文献   

13.
The location and size of a solar impulsive hard X-ray burst have been determined in one dimension to a considerable precision with a balloon-borne X-ray modulation collimator. The center of the X-ray source is on the line passing through the center of a big H flare region of 3 arc min. The size of the X-ray source is remarkably smaller and may be one arc min or less.  相似文献   

14.
More than six hours after the two-ribbon flare of 21 May 1980, the hard X-ray spectrometer aboard the SMM imaged an extensive arch above the flare region which proved to be the lowest part of a stationary post-flare noise storm recorded at the same time at Culgoora. The X-ray arch extended over 3 or more arc minutes to a projected distance of 95 000 km, and its real altitude was most probably between 110 000 and 180 000 km. The mean electron density in the cloud was close to 109 cm–3 and its temperature stayed for many hours at a fairly constant value of about 6.5 × 106 K. The bent crystal spectrometer aboard the SMM confirms that the arch emission was basically thermal. Variations in brightness and energy spectrum at one of the supposed footpoints of the arch seem to correlate in time with radio brightness suggesting that suprathermal particles from the radio noise regions dumped in variable quantities into the low corona and transition layer; these particles may have contributed to the population of the arch, after being trapped and thermalized. The arch extended along the H = 0 line thus apparently hindering any upward movement of the upper loops reconnected in the flare process. There is evidence from Culgoora that this obstacle may have been present above the flare since 15–30 min after its onset.  相似文献   

15.
Electron density in a coronal hole is rediscussed using the new calculation for the Mgviii 436.62/430.47 density-sensitive theoretical line ratio and with the help of available observations.  相似文献   

16.
The radio spectral index map of the Coma halo shows a progressive steepening of the spectral index with increasing radius. Such a steepening cannot be simply justified by models involving continuous injection of fresh particles in the Coma halo or by models involving diffusion of fresh electrons from the central regions.
We propose a two-phase model in which the relativistic electrons injected in the Coma cluster by some processes (starbursts, AGNs, shocks, turbulence) during a first phase in the past are systematically reaccelerated during a second phase for a relatively long time (∼1 Gyr) up to the present time. We show that for reacceleration time-scales of ∼0.1 Gyr this hypothesis can well account for the radio properties of Coma C. For the same range of parameters which explain Coma C we have calculated the expected fluxes from the inverse Compton scattering of the Cosmic Microwave Background (CMB) photons, finding that the hard X-ray tail discovered by BeppoSAX may be accounted for by the stronger reacceleration allowed by the model.
The possibility of extending the main model assumptions and findings to the case of the other radio haloes is also discussed, the basic predictions being consistent with the observations.  相似文献   

17.
Requirements for the number of nonthermal electrons which must be accelerated in the impulsive phase of a flare are reviewed. These are uncertain by two orders of magnitude depending on whether hard X-rays above 25 keV are produced primarily by hot thermal electrons which contain a small fraction of the flare energy or by nonthermal streaming electrons which contain > 50% of the flare energy. Possible acceleration mechanisms are considered to see to what extent either X-ray production scenario can be considered viable. Direct electric field acceleration is shown to involve significant heating. In addition, candidate primary energy release mechanisms to convert stored magnetic energy into flare energy, steady reconnection and the tearing mode instability, transfer at least half of the stored energy into heat and most of the remaining energy to ions. Acceleration by electron plasma waves requires that the waves be driven to large amplitude by electrons with large streaming velocities or by anisotropic ion-acoustic waves which also require streaming electrons for their production. These in turn can only come from direct electric field acceleration since it is shown that ion-acoustic waves excited by the primary current cannot amplify electron plasma waves. Thus, wave acceleration is subject to the same limitations as direct electric field acceleration. It is concluded that at most 0.1% of the flare energy can be deposited into nonthermal streaming electrons with the energy conversion mechanisms as they have been proposed and known acceleration mechanisms. Thus, hard X-ray production above 10 keV primarily by hot thermal electrons is the only choice compatible with models for the primary energy release as they presently exist.  相似文献   

18.
19.
Wang  M.  Xie  R.X. 《Solar physics》1999,185(2):351-360
The characteristics of the millisecond spikes with short duration and weak flux density which were observed with high time resolution (1 ms) at 1420, 2000 and 2840 MHz during the great type IV solar radio burst of 30 July 1990 are introduced in detail in this article. The time profiles of the spikes are statistically analyzed and the parameters of the spike source are also estimated.  相似文献   

20.
In the solar corona the opacities of some of the prominent X-ray emission lines are on the order of 1 over typical coronal path lengths. We present and discuss a particular solution of the radiative transfer problem involving an extended, spherically symmetric coronal shell radiating isotropic, homogeneous emission in which single-scattering also takes place. Within the context of this simplified model we find that scattered radiation is an important contribution to the total emergent resonance line flux and that for the He-like family of resonance (r), intercombination (i), and forbidden (f) lines, the ratio G=(f + i)/r would decrease as a function of optical depth for disk-center emission in an extended spherically symmetric corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号