首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age plateaux and isochrons in the 40Ar-39Ar and similar dating techniques can be severely altered by processes changing the geometric distribution of one isotope relative to the other. Age plateaux and isochrons can even be generated entirely as experimental artifacts. Alterations of 40Ar-39Ar plateau ages by recoil redistribution of 39Ar, incorporation of trapped 40Ar and prior 40Ar loss provide significant examples.10% shifts in isotopic ratios are very easily obtained and would result in errors in 40Ar-39Ar plateau ages of 4 AE old samples of ~100 m.y., which is comparable to the age differences which must be resolved to develop early lunar and solar system chronology. The possible occurrence of diffusion artifacts must be evaluated in every case to establish that ages and age differences obtained by stepwise thermal release analyses are real.All studies involving the stepwise thermal extraction of multiple isotopic components may show similar diffusion artifacts. Constant isotopic compositions may be obtained during thermal release which do not represent the actual compositions of sample reservoirs.  相似文献   

2.
40Ar-39Ar and Rb-Sr ages have been measured on separated minerals from the potassic volcanics of the Roman Comagmatic Region to test the ability of these methods to accurately data Quaternary geological events. The very high K and Rb contents of the Roman magmas present particularly favorable situations in which the very high concentrations of the radioactive nuclides40K and87Rb result in well resolved in situ enrichments of the daughter isotopes despite the very young ages. Six leucite separates contained Ar with very high bulk40/36 ratios (above 1000) and in which the40Ar and the39Ar were very well correlated, yielding well-defined ages averaging3.38±0.08×105 years. Two leucites contained Ar with lower bulk40/36 ratios (~400), and in at least two release steps from these leucites the40Ar/36Ar ratio was significantly lower than atmospheric. Despite the uncertainty in the composition of the trapped component, these two leucites have ages that do not differ significantly from the ages of the other leucites. For the biotites, it was not possible to obtain through stepwise degassing a good separation of in situ radiogenic40Ar from trapped40Ar and therefore the calculated ages are not as precise as those of the leucites. In three cases the biotite age agrees with the age of the cogenetic leucite, but in the remaining two cases discordant ages are obtained, suggesting caution when using biotites as Quaternary age indicators.Rb-Sr measurements on leucite, biotite, and pyroxene separates hand-picked from each of three tuff samples yielded a dispersion in87Sr/86Sr as large as 16 parts in 104 and87Rb/86Sr as high as 218 for leucites, and permitted the determination of internal isochron ages. The ages obtained range from3.8±0.2×105to3.3±0.2×105 years and are in good agreement with the40Ar-39Ar ages on the leucites. The data for each tuff sample yield a well-defined uniform initial87Sr/86Sr. However, different tuffs show small differences in initial87Sr/86Sr pointing to distinct sources or to assimilation of different materials during the extrusion of the tuffs. These measurements demonstrate the possibility of dating Quaternary materials by both the40Ar-39Ar method and the Rb-Sr method. The observation of concordant ages with a precision of a few percent represents a powerful tool in Quaternary stratigraphy.  相似文献   

3.
The effects of thermal and compressional treatment on40Ar-39Ar systematics have been investigated on three artificially heated biotite samples (heated for 1 hour at 700°C and 860°C in air and 700°C in vacuum respectively) and uniaxially compressed granite (p = 1400bar) and basalt samples (p = 1650bar). The40Ar-39Ar results for the disturbed samples are compared with those for undisturbed samples. Except for the vacuum-heating case, the effects of the disturbances may be interpreted as the combined effect of a partial loss of radiogenic40Ar from the sample and an incorporation of air Ar into the sample. Common diagnostic effects are (1) reduction of the total fusion age, (2) distortion of the age spectrum and, if the degree of the partial Ar loss is small, (3) approximate preservation of the isochron age, and (4) reduction of the intercept value (40Ar/36Ar) in the isochron plot.The features observed in the age spectra of artificially disturbed samples are rather common in geologically disturbed samples, suggesting that the artificial disturbances simulate the effects of geological disturbances on40Ar-39Ar systematics.  相似文献   

4.
Extrusion ages of archaeological obsidian, especially as determined by the 40Ar/39Ar method, can provide reliable maximum ages for tool manufacture. In at least one case in the Middle Awash of Ethiopia, freshly extruded obsidian was used for tool making, resulting in useful maximum ages for site occupation. Hydration resulting in mobility of K and/or Ar in glass, and recoil artifacts produced by neutron irradiation, fatally affect most glass shards from volcanic ashes. The much lower surface area to volume ratio of most archaeological obsidian, however, indicates that the affected areas can be manually removed prior to analysis and the recoil and hydration problems can be easily overcome. A more important issue in dating obsidian is that of possible mass-dependent kinetic isotope fractionation during or subsequent to quenching of volcanic glasses. This is evidenced in some cases by sub-atmospheric initial 40Ar/36Ar ratios, and more generally in sub-atmospheric 38Ar/36Ar. Resulting bias can be avoided through the use of isochron ages, which do not entail the assumption of an initial value of 40Ar/36Ar as is required for plateau ages. Since step heating of glasses often yields limited variability in 40Ar:39Ar:36Ar (and therefore little spread on isochrons), another approach is to use an average value for initial 40Ar/36Ar, with concomitantly larger uncertainty than is associated with atmospheric 40Ar/36Ar, when calculating a plateau age. The 38Ar/36Ar of an un-irradiated subset of our samples validates the inference of kinetic fractionation, and potentially provides a basis for determining initial 40Ar/36Ar in samples that fail to yield isochrons, but only in samples lacking magmatic excess 40Ar. These approaches allow us to reliably apply the 40Ar/39Ar method to volcanic glasses, which has resulted in maximum ages for archaeological sites that are not amenable to traditional geochronological methods. 40Ar/39Ar geochronology can also provide information on the geological provenance of the raw material used for tool making, especially when combined with geochemical data.  相似文献   

5.
39Ar-40Ar ages and37Ar-38Ar exposure ages of samples representing four different lithologies of the Apollo 17 station 7 boulder were measured. The age of the dark veinlet material77015of3.98 ± 0.04AE is interpreted as representing the time of intrusion of this veinlet into the 77215 clast. The data obtained so far indicate that the vesicular basalt 77135 formed 100–200 m.y. later. However, this has to be confirmed by39Ar-40Ar investigations on separated mineral and/or grain-size fractions. A small clast enclosed in the 77135 basalt gives a well-defined high temperature age of3.99 ± 0.02AE. A sample of the noritic clast 77215 gave4.04 ± 0.03AE, the highest age found so far in this boulder. The39Ar-40Ar ages obtained are in agreement with the age relationships deduced from the stratigraphic evidence.Taking into account the shielding by the boulder itself, an average37Ar-38Ar exposure age of(27.5 ± 2.5)m.y. is obtained for the samples collected from the boulder.  相似文献   

6.
We report the results of thermal-release argon analyses of neutron-irradiated green glass spherules separated from lunar sample 15426. The gas-retention age, as determined by the40Ar39Ar method, is (3.38 ± 0.06) X 109yr. This age is similar to those of local mare basalts and distinct from the ages of Appenine Front samples recovered from the same region as 15426. Trapped argon is present in near-surface regions of the spherules, and can be resolved into at least two components requiring separate origins, a shallow (0.1 μ) component with40Ar/39Ar > 30, and a deeper (2 μ) component with 40Ar/36Ar= 2.9. The ratio of trapped40Ar to36Ar is higher than found in any lunar soil and suggests that the trapped gas was implanted early in the spherules' history. The cosmic-ray exposure age is 300 my.  相似文献   

7.
李大明  陈文寄 《地震地质》1992,14(4):361-367
探讨了玄武岩、辉绿岩和断层泥中粘土矿物3种全岩样品在40Ar-39Ar分析中的某些问题。利用快中子照射过程中不同矿物发生不均匀Ar丟失的模式解释了玄武岩40Ar-39Ar全熔年龄与K-Ar年龄间的差异。对辉绿岩样品的40Ar-39Ar分析确定了辉绿岩脉的侵入时代,并说明该地区其它辉绿岩样品K-Ar年龄的离散是受后期变质作用的影响。对于断层泥中粘土矿物,快中子照射中39Ar的反冲丢失导致<1μm粒级部分的40Ar-39Ar全熔年龄偏高。<1μm和2~10μm粒级样品的40Ar-39Ar年龄谱中,低温区较低的阶段年龄可能是断层后期较强烈活动的结果。  相似文献   

8.
We have applied the unspiked K-Ar and the 40Ar/39Ar methods to samples precisely collected and localised, on both Central Indian Ridge flanks, to test their effectiveness and reliability when applied to the dating of recent (i.e. less than 1 Ma) MORBs. Twenty six samples) from the sixty five samples collected every ∼500 m up to the Brunhes-Matuyama boundary on both ridge flanks, were selected based on their distance from the ridge axis. Therefore, we can evaluate whether the isotopic ages are a good indicator of the crystallisation age by considering their geographic position with respect to the ridge axis (zero age) and the B/M magnetic boundary. Direct comparison of the isotopic and model ages shows that only 9 out of 26 samples were successfully dated. The GIMNAUT – MORB's test case amply demonstrates that the unspiked K-Ar technique, when applied to submerged volcanic samples, is subject to potentially defective assumptions of trapped atmospheric argon, excess/fractionated argon and extremely sensitive to alteration. Although the unspiked K-Ar technique is theoretically capable to produce high precision ages, the comparison with the 40Ar/39Ar techniques reveals that only 15% (i.e. 4 samples out of 26) of the ages obtained here are geologically meaningful. Five of the seven 40Ar/39Ar incremental heating experiments provide meaningful ages. Because potential sources of systematic errors such as excess 40Ar*, recoil of 39ArK and 37ArCa can be identified and because effects of alteration are significantly reduced by the pre-heating of the samples up to 500–600°c, the 40Ar/39Ar incremental heating method appears to be the method of choice to date MORBs.  相似文献   

9.
Two small fragments, L24B, a glass-rich agglutinate (1.9 mg) and L24A, a fine-grained lithic fragment (9.4 mg), from the Luna 24 landing site have been neutron irradiated for the purpose of39Ar-40Ar dating. A fairly well-defined39Ar-40Ar plateau age of 3.65 ± 0.12 AE was found for the larger fragment. After appropriate corrections the composition of the trapped and spallogenic Ar could be deciphered. The evolution of38Arsp/37Ar showed that 660 m.y. and 500 m.y. were the most reliable exposure ages for L24A and L24B, respectively. The Ti contents of ≤0.6% determined by gamma-counting prior to the Ar analysis indicate both fragments being associated with the group of low-Ti or even very low-Ti basalts.  相似文献   

10.
Alpine biotites containing excess40Ar have been analysed by step-heating argon analysis of both neutron irradiated and unirradiated samples. In addition to age spectra the data are discussed in terms of the thermal release of40Ar,39Ar,37Ar and36Ar and also displayed on a correlation plot of36Ar/40Ar vs.39Ar/40Ar which is used to interpret the data and present a model of isotopic evolution during metamorphic cooling. This diagram overcomes misleading complications of isochron plots. The samples exhibit the following argon systematics: (1) flat age spectra for 80–90%39Ar release with anomalously old ages but early gas fractions that approximate the accepted cooling ages; (2) each sample shows decreasing36Ar/40Ar with increasing temperature of heating step with three samples having a negative correlation of36Ar/40Ar vs.39Ar/40Ar and one a positive correlation; (3) there appear to be two36Ar components, one released at high temperatures and correlated with radiogenic40Ar and one released at low temperatures which is not correlated with radiogenic40Ar; and (4) there is no significant effect of neutron irradiation on the release of40Ar and36Ar.Interpretation suggests that these biotites contain a record of the evolution and isotopic composition of ambient argon retained within the metamorphic host rocks during cooling. After incorporation of argon of high40Ar/36Ar another argon component, of atmospheric composition, was retained at lower temperature and argon partial pressures.  相似文献   

11.
A redetermination of the isotopic composition of atmospheric argon by Lee, J.-Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim, J.S. [2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507–4512] represents the first refinement since the work of Nier [1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Reviews 77, 789–793]. The new 40Ar:38Ar:36Ar proportions imply <1% adjustments to 40Ar/39Ar ages in all but exceptional cases of very young and/or K-poor and/or Ca-rich samples, or cases in which samples are grossly under- or over-irradiated. Analytical protocols employing atmospheric argon to determine mass discrimination corrections are insensitive to the effects of revision on the air correction, but are subject to non-negligible adjustments arising from expanded heavy to light isotope ratios attending the increased mass discrimination correction. The competing effects of increased 40Ar/39Ar and 40Ar/37Ar ratios render the adjustments a function of sample chemistry and neutron irradiation parameters. The improved precision of atmospheric 40Ar/36Ar and 38Ar/36Ar permits increasingly sensitive detection of departures from atmospheric values. Non-atmospheric initial 40Ar/36Ar values are increasingly well-documented in volcanic materials, including subatmospheric values correlated with 38Ar/36Ar in a trend consistent with kinetic mass fractionation whereby incomplete equilibration between magma and atmosphere favors light isotope enrichment in the magma. The detailed mechanism(s) of such fractionation are unclear and must be clarified by further study. A detectable increase in atmospheric 40Ar/36Ar in the past 800 ka [Bender, M.L., Barnett, B., Dreyfus, G., Jouzel, J., Porcelli, D., 2008. The contemporary degassing rate of 40Ar from the Earth. Proceedings of the National Academy of Sciences 105, 8232–8237] suggests that ages of late Quaternary (e.g., <100 ka) materials incorporating large amounts of atmospheric argon such as biotite may be underestimated by as much as 100% if a modern atmospheric 40Ar/36Ar value is erroneously assumed, unless air argon is used to determine mass discrimination. Further evaluation of the evolution of paleoatmospheric 40Ar/36Ar, and the fidelity with which argon trapped in igneous materials reflects this, would be very productive. The use of isochrons rather than model (e.g., plateau) ages mitigates the vagaries associated with uncertain trapped argon isotope ratios, and the importance of strategies to derive statistically valid isochrons is underscored.  相似文献   

12.
This paper reports the results of thermal-release argon analyses of neutron-irradiated samples of the two nakhlite meteorites, Lafayette and Nakhla. The initiation of retention of radiogenic40Ar in Lafayette appears to have been a reasonably well-defined event which occurred (1.33 ± 0.03) × 109 yr ago, as determined by the40Ar-39Ar method. Nakhla also appears to have been retaining argon no longer than 1.3 × 109 yr, but its gas-retention age cannot be considered well-defined because its apparently most-retentive sites have nominal gas-retention ages shorter than those of the less-retentive sites which contain most of its potassium.  相似文献   

13.
The presence of a non-radiogenic argon component within rocks and minerals at the time of their crystallization (termed initial argon) is now widely recognized. Present data indicate that the36Ar concentration of this initial argon is in the order of 10?9 cm3/g STP in a wide range of geological materials. In40Ar-39Ar analyses the preference for small samples and division of the gas evolved into a number of temperature steps means that the amount of initial36Ar analyzed is often less than the argon extraction line blank. Thus if blank corrections are not made an isochron plot will represent mixing lines between atmospheric argon and the argon derived from the sample. In this case the isochron parameters will probably be in error. Secondary alteration of samples adds atmospheric argon not related to the initial argon present in a rock at the time of its formation and must be eliminated or avoided if the isochron technique is to be used. The inability to obtain isochrons for samples with excess radiogenic argon may be related to significant extraction system contamination. At present the application of the two-error regression technique is being misapplied in determining the quality of fit and in some cases underestimating the error limits assigned to the isochron parameters.  相似文献   

14.
40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko¯ko Seamounts, the new data indicate that the best age for the bend is 42.0 ± 1.4 m.y.Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain.40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of39Ar from nonretentive montmorillonite clays that have also lost40Ar.  相似文献   

15.
We have used two techniques (i.e. K–Ar and 40Ar/39Ar) on Icelandic obsidian samples to produce and more specially to estimate the quality and accuracy of the ages that can be obtained. Following a meticulous protocol, we were able to date six rhyolitic eruptions with an accuracy 7 to 40 times better than those obtained previously. Among these six rhyolites are the first published K–Ar and 40Ar/39Ar ages of Krafla.The combined K–Ar and 40Ar/39Ar approach produces not only highly precise but also accurate ages. Such high precision makes it possible to produce accurate reconstructions of ice thickness at a given location and time, to test whether there was a possible link between deglaciation and rhyolitic volcanism onset in Iceland, and to explore other possible applications of the 40Ar/39Ar dating method to paleo-environmental and paleo-climatic reconstruction at Iceland's latitude.Then, we investigate, by combining geochemistry (i.e. determination of major and trace element composition) and geochronology (i.e. dating of rhyolitic eruptions via K–Ar and 40Ar/39Ar dating) for a number of Icelandic rhyolitic volcanoes whose activity could be recorded in North Atlantic sedimentary cores as well as in Arctic ice. The aim of this approach is to provide new independent anchors and correlations between climate records. Of the six dated eruptions, we propose that one is record in North Atlantic sediments, the Loðmundur eruption that constitutes one of the Kerlingarfjöll tuyas, which we date at 189.9 ± 1.1 ka and assume to be the source of the tephra recognized in core MD04-2822 at a depth of 3630–3631 cm.  相似文献   

16.
Gneisses within an Archean basement terrane adjacent to the southwestern portion of the Labrador Trough were variably retrograded during a regional metamorphism of Grenville age (ca. 1000 Ma). Biotites from non-retrograded segments of the gneiss terrane record40Ar/39Ar plateau and isochron ages which date times of cooling following an episode of the Kenoran orogeny (2376–2391 Ma). A suite of gneiss samples displaying varying degrees of retrograde alteration was collected across the Grenville metamorphic gradient. Biotites in these samples show no petrographic evidence of retrograde alteration, however they do record internally discordant40Ar/39Ar age spectra. Although the extent of internal discordance is variable, the overall character of the release patterns is similar with younger apparent ages recorded in intermediate-temperature gas fractions. The total-gas dates range from 2257±27 Ma (northwest) to 1751±23 Ma (southeast), suggesting that variable quantities of radiogenic argon were lost from the Archean biotites during Grenville metamorphism. The “saddle-shaped” nature of the discordant spectra indicates that argon loss was not accomplished through single-stage, volume diffusion processes.Biotites in portions of the gneiss terrane which were completely recrystallized during Grenville metamorphism are petrographically and texturally distinct. A representative of this phase records a40Ar/39Ar plateau age of 2674±28 Ma. This date is markedly inconsistent with regional constraints on the timing of Grenville metamorphism, and indicates the presence of extraneous argon components. Both the extraneous and radiogenic argon components must have been liberated in constant proportions during experimental heating because the argon isotopic data yield a well-defined40Ar/36Ar vs.39Ar/36Ar isochron corresponding to an age (2658±23 Ma) similar to that defined by the plateau portion of the spectrum.The40Ar/39Ar biotite dates suggest that the effects of Grenville metamorphism extent 15–20 km northward into the Superior Province. The limit of this overprint is approximately coincident with the northernmost development of Grenville age thrust faults in the Archean terrane. Therefore, it is proposed that the northern margin of the Grenville Province in southwestern Labrador should be located along the northernmost Grenville thrust fault because this represents both a structural and a thermal discontinuity.  相似文献   

17.
In several xenolithic ultramafic rocks from the Kola Peninsula, including a magnetic separate, abnormally high40Ar/39Ar ratios persisted at low and high temperatures. The lowest40Ar/39Ar ratio was consistently observed at intermediate temperatures (900–1100°C), indicating an apparent age of 2.8–3.1 b.y.; however, this may not indicate the formation age.The quantity of excess40Ar was estimated at each temperature fraction, adopting ages inferred from published Rb-Sr ages or the minimum40Ar/39Ar age. Excess40Ar is abundantly trapped both in mineral lattices and nonretentive trapping sites, but the trapping sites are different from those of in-situ radiogenic40Ar. The high temperature component of excess40Ar is considered to represent Ar dissolved during mineral formation in the upper mantle or the lower crust.A correlation between the amount of high temperature excess40Ar and36Ar exists for some samples. The40Arexcess/36Ar ratios of the rocks of probable upper mantle or lower crust origin vary from about 10 000 to 35 000, which may suggest large fluctuations of this ratio in the deep interior of the earth. The high value implies that most36Ar was already degassed from the earth's interior at least 2 or 3 b.y. ago.  相似文献   

18.
K-Ar ages have been determined for sulfide minerals for the first time. The occurrence of adequate amounts of potassium-bearing sulfides with ideal compositions K3Fe10S14 (~10 wt.% K) and KFe2S3 (~16 wt.% K) in samples from a mafic alkalic diatreme at Coyote Peak, California, prompted an attempt to date these materials. K3Fe10S14, a massive mineral with conchoidal fracture, gives an age of 29.4 ± 0.5m.y.(40Ar/39Ar), indistinguishable from the 28.3 ± 0.4m.y.(40Ar/39Ar) and 30.2 ± 1.0m.y.8 (conventional K-Ar) ages obtained for associated phlogopite (8.7 wt.% K). KFe2S3, a bladed, fibrous sulfide, gives a younger age, 26.5 ± 0.5m.y.(40Ar/39Ar), presumably owing to Ar loss.  相似文献   

19.
A method for measuring potassium-argon ages making use of the reaction39K(λ, n)38Kβ+38Ar to indirectly determine potassium is discussed. In principle, it is closely analogous to the40Ar/39Ar dating method and should possess all of the attributes of that technique. It is demonstrated that precise dating of mica samples with ages between 15 my and 1000 my can be carried out, and a discussion of potentially interfering reactions suggests that it may be possible to extend the method to the problem of induced argon isotopic dating of calcium-rich minerals.  相似文献   

20.
K–Ar and 40Ar/39Ar dates are presented for locations in the Izu–Bonin – Mariana (IBM) forearc (Ocean Drilling Program (ODP) sites 786 & 782, Chichijima, Deep Sea Drilling Program (DSDP) sites 458 & 459, Saipan), and Palau on the remnant arc of the Kyushu–Palau Ridge. For a number of these locations, the 40Ar/39Ar plateau and 36Ar/40Ar versus 39Ar/40Ar isochrons give older ages than the K–Ar results. The most important results are: (i) at site 786, initial construction of the proto-IBM (now forearc) basement occurred at least by ca 47–45 Ma, consistent with the age of the immediately overlying sediments (middle Eocene nannofossil Zone CP13c); the younger pulse of construction dated at ca 35 Ma by K–Ar could not be confirmed by 40Ar/39Ar analysis; (ii) 40Ar/39Ar ages for the initial construction of the Mariana portion of the IBM system are as old as those of the Izu–Bonin portion, for example at site 458, initial construction commenced at least by ca 49 Ma and at ca 47 Ma at Saipan (Sankakayuma Formation); and (iii) a combination of K–Ar and 40Ar/39Ar ages indicate continued boninite magmatism in the Izu–Bonin forearc (and remnant arc at Palau) until ca 35 Ma. Subduction inception including boninite series rocks along most of the exposed length of the IBM system, clearly preceded by some 5 million years the Middle Eocene (ca 43.5 Ma) change in Pacific plate motion. Boninitic series magmatism persisted at locations now exposed in the forearc for ~ 15 million years after arc inception concurrently with low-K tholeiitic series eruptions from a subaerial arc system, established at ≥ 40 Ma, on the Kyushu–Palau Ridge. For the Mariana portion of the IBM system, reconstruction of the proto-arc places this activity adjacent to the concurrent but orthogonally spreading Central Basin Ridge of the West Philippine Basin. It is possible that a combination of subduction of a young North New Guinea Plate beneath newly created back-arc basin crust may account for some of the features of the Mariana system. It is clear, however, that the understanding of the processes of subduction initiation and early IBM arc development is incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号