首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Poly-deformed and poly-metamorphosed glaucophane-eclogite mega-boudins beneath the Samail Ophiolite, Oman record an early subduction-related high-P metamorphism as well as subsequent overprinting deformation and metamorphism related to exhumation. Previously published Rb/Sr ages of 78 Ma and 40Ar/39Ar ages of 82-79 Ma record the major NE-directed shearing event that partially exhumed the eclogites to a shallower crustal level. New Sm/Nd garnet-garnet leachate-whole rock isochron data from garnet-bearing eclogite assemblages in the As Sifah subwindow in NE Oman are 110±9 Ma (DG02-87D); 5-point isochron) and 109±13 Ma (DG02-86E; 3-point isochron). On the basis of microfabric and field structural relationships these ages are interpreted to reflect the timing of prograde, peak high-P metamorphism in the rocks structurally beneath the Samail Ophiolite. This metamorphism clearly predates the age of formation of the obducted Samail oceanic lithosphere (97-94 Ma) as well as the subsequent obduction onto the margin (80-70 Ma). A U-Pb SHRIMP zircon age from small (<200 μm in length) zircons with herring-bone textured zoning from DG02-87D indicate that rapid zircon growth associated with high-Si phengites occurred at 82±1 Ma. Zircon growth is possibly related to liberation of Zr on garnet breakdown during decompression metamorphism under high-P conditions with exhumation. These data require that crustal stacking models attendant with ophiolite obduction are inappropriate to explain the Oman high-P metamorphism.  相似文献   

2.
Major and trace element compositions of amphibolites and quartzose rocks in the 230-m-thick metamorphic sole underlying the mantle section of the Oman ophiolite in Wadi Tayin area were determined to investigate the chemical characteristics of the hydrous fluid released from subducted amphiboltie-facies slab. The fluid-immobile element compositions indicate that protoliths of these rocks are mid-ocean ridge basalt-like tholeiite and deep-sea chert, which is consistent with the idea that these rocks represent Tethyan oceanic crust overridden during the early, intraoceanic thrusting stage of the Oman ophiolite emplacement. The rare-earth element (REE) and high field-strength element concentrations of the amphibolites show limited variations, within a factor of two except for a few evolved samples, throughout transect of the sole. On the other hand, concentrations of fluid-mobile elements, especially B, Rb, K and Ba, in amphibolites are highly elevated in upper 30 m of the sole (> 600 °C in peak metamorphic temperature), suggesting the equilibration with evolved, B-Rb-K-Ba-rich fluids during prograde metamorphism. The comparison with amphibolites in the lower 150 m (500 to 550 °C) demonstrates that the trace element spectra of the fluids equilibrated with the high-level amphibolites may vary as a function of metamorphic temperature. The fluids are characterized by striking enrichments of B, Rb, K and Ba and moderate to minor enrichments of Sr, Li, Be and Pb. At higher temperature (up to 700 °C), the fluids become considerably enriched in light REE and Nb in addition to the above elements. The estimated trace element spectra of the fluids do not coincide with the compositions of basalts from matured intra-oceanic arcs, but satisfactorily explain the characteristics of the low-Pb andesites and boninites found in the Oman ophiolite. Compositional similarity between the boninites of Oman and other localities suggests that the fluids estimated here well represent the amphibolite-derived fluids involved in the magmatism of immatured, hot, shallow subduction zones.  相似文献   

3.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   

4.
Sabah A.  Ismail  Shoji  Arai  Ahmed H.  Ahmed  Yohei  Shimizu 《Island Arc》2009,18(1):175-183
Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene-free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.  相似文献   

5.
A technique employing the resonant nuclear reaction 1H(19F, αγ) 16O has been used to measure hydrogen concentration versus depth in selected coarse fine fragments from the Apollo 11 and Apollo 15 missions, and in glass coated surface chips from two Apollo 15 rocks. The highly variable hydrogen content in the coarse fine fragments is concentrated mainly in a layer extending from the surface to a depth of 2000 ± 500A?. The hydrogen content of the surface region of the Apollo 15 rock chips is comparable to that of the coarse fine samples, but is concentrated mainly within a few hundred angstroms of the surface. The hydrogen depth distribution in a piece of platinum foil from the Apollo 16 Lunar surface Cosmic Ray Experiment was also measured in an attempt to place a limit on the flux of 10–40 keV protons associated with a solar flare event.  相似文献   

6.
This paper discusses patterns that are observable in the alteration of effusive rocks that were discharged by Baranskii Volcano (central Iturup Island) under the action of sulfate chloride as well as acidic and ultra-acidic water (in the Kipyashchaya Rechka thermal brook). We acquired data on changes in the chemical and mineralogic composition of the rocks, structural features, porosity, and petrophysical properties. The dynamics of leaching and the leaching phase in a flowing acidic (ultra-acidic) geothermal environment are described. We note that the mechanism that is responsible for hydrogen sulfate leaching of rocks at the ground surface may be largely analogous to the generation of secondary quartzites (mono-quartzites) in the zones of ascending acidic gas flows above small gabbro-diorite and diorite intrusions.  相似文献   

7.
The chemical variation of the Earth’s mantle rocks has been interpreted to reflect multiple episodes of partial melting. With the increasing of melt generation and extraction, the readily molten minerals and incompatible elements decrease in the residual mantle peridotite. The present-day gladiate of the Earth, however, cannot cause mantle batch melting[1], nor 40% partial melting that allows pyroxenes to be completely dissolved into melt and forms dunite[2,3]. Recent studies show that mantl…  相似文献   

8.
Based on GC-MS testing data of many saturated hydrocarbon samples, 17α(H)-C30 diahopanes (C30 *) are extensively distributed in the lacustrine hydrocarbon source rocks of the Yanchang Formation in Ordos Basin, but show remarkable differences in relative abundance among various source rocks. Generally, Chang 7 high-quality source rock (oil shale) developed in deep lake anoxic environment shows lower C30 * content, whereas Chang 6–9 dark mudstone developed in shallow to semi-deep lake, sub-oxidizing environment shows relatively high to high C30 * value. Particularly, Chang 7 and Chang 9 black mudstones in Zhidan region in the northeast of the lake basin show extremely high C30 * value. A comparative analysis was made based on lithology, organic types and various geochemical parameters indicative of redox environment, and the results indicate that environmental factors such as redox settings and lithology are key factors that control the C30 * relative abundance, while organic types and maturity may be minor factors. High to extremely high C30 * values are indicative of sub-oxidizing environment of fresh-brackish water and shallow to semi-deep lake. Therefore, research on C30 * relative content and distribution in lacustrine hydrocarbon source rocks in the Yanchang Formation, especially on the difference in C30 * between Chang 7 high-quality source rocks (oil shale) and Chang 6–91 source rocks (dark mudstone), will provide an important approach for classification of Mesozoic lacustrine crudes and detailed oil-source correlation in the basin. Supported by National Natural Science Foundation of China (Grant No. 40773028)  相似文献   

9.
The reduction of the microhardness and the crystal constants of some non-metallic materials, such as calcite, dolomite, antigorite, etc., are observed after a short time of hydrogen permeating treatment at low pressure. It means that hydrogen diffusion can cause their strength dropping or weakening. The hydrogen, which is produced under the earth by various chemical reactions or accumulated when the earth formed, is migrating up continuously along faults, causing weakening of rocks and faults at the same time. So it is possible that rocks and faults break under lower tectonic stress condition. Hydrogen anomalies are passive reflection, precursor and accompaniment of fault activities or earthquakes on the face of it, but hydrogen migrating has active influence on faults and its moving. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 229–235, 1992.  相似文献   

10.
Historical volcanic rocks of the Aeolian islands range in composition from shoshonitic basalts to rhyolites, which might reflect fractional crystallization of a shoshonitic parent magma. However Sr and Pb isotopic data indicate a more complex history. The shoshonitic basalts at present erupted at Stromboli, although chemically similar to the postulated parent magma, are genetically unrelated to the other studied rocks. Sr isotopes indicate that Vulcano, Vulcanello and Lipari had independent magma sources. It is proposed that crustal contamination raised the Sr isotopic composition of the Lipari rhyolites. The rocks of these island are related by a common very steep trend of207Pb/204Pbvs. 206Pb/204Pb. Such a trend is a common feature of orogenic magmas and shows that Pb was derived by mixing of at least two components. Presently it is impossible to constrain precisely either the timing or the physical meaning of the Pb end members. The Pb isotopic trend in the Eolian island is very distinct from those recorded in volcanic rocks both from behind the arc (Etna, Iblean Mts.) and from Central and Southern Italy.  相似文献   

11.
The tectonic environment of Kyushu, Japan is affected both by the subduction of the Philippine Sea plate and by the extensional tectonics related to rifting of Okinawa Trough at the eastern margin of the Eurasia Plate. We found that the Sendai fault zone acts as a channel for concurrent eruption of oceanic island basalt (OIB)-type and island arc (IA)-type basaltic rocks, propagating west to east in the Sendai region of southern Kyushu. The location of the Sendai fault zone is likely to correspond to the left-lateral shear zone in southern Kyushu as inferred by GPS Earth Observation Network. A similar magmatic association is present in the Beppu–Shimabara (BS) graben system in central Kyushu. The associate magmas of OIB-type rocks in Kyushu can be classified into typical, EM II-like and their intermediate OIB-type magmas in addition to MORB-like OIB-type magma in 87Sr/86Sr–Nb/Y systematics. Typical OIB-type and intermediate OIB-type magmas are erupted within the Sendai fault zone and BS graben system, respectively. The former is characterized by highest Nb/Y but low 87Sr/86Sr similar to MORB-like OIB-type magma erupted in northern Kyushu and the latter has intermediate Nb/Y and 87Sr/86Sr between typical and EM II-like OIB-type magmas. Almost all the IA-type rocks within the Sendai fault zone are generated from parental IA-type magma in Kyushu and characterized by weak crustal assimilation, having the lowest 87Sr/86Sr similar to typical OIB-type magma but the highest 143Nd/144Nd of arc magmas in Kyushu. The ages of both types of basaltic rocks within the Sendai fault zone range from 1.6 to <0.01?Ma clearly younger than those of andesitic rocks on northern and southern outsides of the fault zone and become younger from west to east. Initial formation of the fault zone has been induced by the counterclockwise rotation of southern Kyushu during the last 2?Ma as well as the BS graben system. Kyushu has continued to be split into three parts by the Sendai fault zone and BS graben during the Quaternary; northern, central, and southern zones. Their initial formation ages are likely to be linked to the initial rifting age of the middle Okinawa Trough back-arc basin.  相似文献   

12.
The Flin Flon Belt of Canada contains Paleoproterozoic volcanic–sedimentary sequences that are related to the Trans‐Hudson Orogeny. The sequences include island arc volcanic and volcaniclastic rocks (Amisk Group) that are unconformably overlain by subaerial sedimentary rocks (Missi Group), and younger deep facies sediments. In the Flin Flon area, several north–south trending faults divide the sequences into blocks and obscure the depositional environment of the deep facies sediments. Locally, within the Flin Flon area, the Embury Lake Formation is in fault contact with island arc volcanic–sedimentary sequences of the Amisk and Missi Groups. To identify the depositional environment of the Embury Lake Formation, we used lithologic and geochemical approaches. Here, we report carbon isotopic values in organic matter (δ13Corg) and sulfur isotopes (δ34S), as well as total organic carbon and total sulfur measurements for the black shale in the formation. Samples were taken from a drill core that contains alternating bands of sandstone and black shale. Pyrite in the black shale is divided into four textural types: euhedral, vein‐type, elliptical, and microcrystalline. Microcrystalline pyrite is typically generated by microbially mediated sulfate reduction. An extremely low S/C ratio (avg. = 0.04) is consistent with lacustrine deposition. The ranges of δ13Corg (?36 ‰ to ?27 ‰) and δ34S (+3.0 ‰ to +7.7 ‰) values can be explained by bacterial photosynthesis that involved Calvin cycle and acetyl CoA pathways, and sulfate reduction in a low‐sulfate environment. Considering the depositional age reported in a previous study of < 1.84 Ga, the Embury Lake Formation was likely emplaced in a lacustrine setting during the Trans‐Hudson Orogeny.  相似文献   

13.
Chromite in the mantle section of the Oman ophiolite: A new genetic model   总被引:9,自引:0,他引:9  
Hugh  Rollinson 《Island Arc》2005,14(4):542-550
Abstract   This paper reviews the compositional data (major elements, platinum group element [PGE] concentrations, Os- and O-isotopes) for chromites from the mantle section of the Oman ophiolite. Chromites in chromitite from the Oman ophiolite lie on a compositional spectrum between high-Cr♯, boninite-like and low-Cr♯, mid-oceanic ridge basalt-like end-members. The high-Cr♯ end-member is low in Ti, has a fractionated PGE pattern and is enriched in iridium group-platinum group elements (IPGE). The low-Cr♯ end-member has higher Ti and an unfractionated PGE pattern. The compositional variation in the chromitites reflects their crystallization from a range of different melt compositions. It is proposed that this wide variation in melt compositions was produced by the process of a melt–rock reaction, whereby a basaltic melt has reacted with harzburgitic mantle to yield successively more Cr-rich melts. In contrast to previous models, this approach does not require a change in the tectonic environment to explain the different chromite types.  相似文献   

14.
A useful tool to elucidate past tectonic environments is the geochemistry of volcanic and sedimentary rocks when used together.The regional structural setting of the Oman Mountains indicates that deep-water sediments and volcanic rocks formed adjacent to the rifted Arabian margin in the Late Triassic near the axis of a narrow ocean basin of Red Sea-type. Tholeiitic to trachytic extrusives formed seamounts associated with Late Triassic reefal build-ups. “Immobile” trace element compositions point to a within-plate origin. The interbedded and overlying Late Triassic deep-sea sedimentary cover comprises ribbon radiolarites and both distal siliclastic and calcareous turbidites that accumulated on an abyssal plain at least ca. 180 km northeast of the Arabian continent. Associated ferromanganiferous oxide-sediments are interpreted as chemical precipitates derived from high-temperature vents in the spreading axis of the young ocean basin. Pervasive regional subsidence took place during end Triassic/Early Jurassic time.Later, in the Cretaceous, oceanic crust was consumed in a northeast-dipping subduction zone. MORB-type crust was subducted while Late Triassic volcanic edifices and sedimentary cover were accreted. During eventual trench-margin collision the Semail ophiolite split into blocks allowing sub-ophiolite melange rocks to be expelled upwards through corridors, creating the Batinah Melange. As the ophiolite nappe ploughed inboard over already thrust-assembled abyssal plain sediments (Hawasina Complex), some duplexes were uplifted, oversteepened, overturned and then slid backwards onto the ophiolite to form the Batinah Sheets.  相似文献   

15.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

16.
Oxygen isotope data are reported for 27 igneous rocks of Mesozoic to Quaternary age from the Central Andes. 26–29°S. The plutonic rocks, and most of the volcanics, have δ18O values between 6.2 and 8.3‰.The whole-rock δ18O values show a weak correlation with initial87Sr/86Sr data. This O-Sr array differs from documented trends for calc-alkaline plutonic suites from California, Scotland and northern Italy, but overlaps with data for volcanic and plutonic rocks from Ecuador, northern Chile and southern Perú.The oxygen isotope results indicate that the magmas evolved without significant contamination from supracrustal rocks (e.g., rocks that experienced18O enrichment during surficial weathering). The available O, Sr and Pb isotopic data for these rocks are best explained by magma generation in the upper mantle or lower crust. From the Late Mesozoic on, the87Sr/86Sr values were modified at depth by isotopic exchange between the magma and a continually thickening crust of plutonic rocks of Late Precambrian to early Mesozoic age.  相似文献   

17.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5 ± 0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5 ± 0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

18.
Strontium and oxygen isotope measurements on the alkali basalt-trachyte-phonolite suite of St. Helena show that some of the late-fractionated rocks are enriched in 87Sr and depleted in 18O relative to the older basalts. The data rule out both the formation of the late-fractionated rocks by the partial melting of hydrothermally altered oceanic crust and the contamination of the volcanic rocks by oceanic sediment. It also appears to be incompatible with models based either on the melting of previously fractionated and crystallized liquids in the volcanic pile, or the long-term fractionation of lavas over several millions of years in a sub-volcanic magma chamber.It is concluded that hydrothermal interaction with meteoric water is the most important cause of the 18O depletion. If the interaction occurred at widely differing temperatures, and involved meteoric and seawaters, it might conceivably have caused both the oxygen and strontium isotope heterogeneities.  相似文献   

19.
The oxygen isotope systematics of Tertiary volcanic rocks of east-central Nevada and of plutonic and metamorphic rocks of the Ruby Mountains-East Humboldt Range core complex provide complementary evidence for major18O-depletion and 18O/16O homogenization of mid-crustal rocks during metamorphism and magmatism. The δ18O value of crustal source material for silicic volcanic rocks decreased from between +9 and +11‰ to between +7 and +8‰ over 5 Ma. Mid-crustal metasedimentary and granitic rocks in the East Humboldt Range have δ18O values very similar to the volcanic rocks and values are lower and more homogeneous at deeper structural levels. Exchange with deep-seated mantle-derived igneous rocks, or fluids derived therefrom, is the most plausible18O-depletion mechanism. Intrusion of these mafic magmas promoted crustal melting and fluid migration. Homogenization of 18O/16O resulted from migration of high-temperature fluids and melts at mid-crustal levels, and was less effective at higher structural levels where the crust was dominated by less permeable carbonate rocks.  相似文献   

20.
The Cenozoic volcanic rocks of eastern China are subalkalic to alkalic basalts erupted in an early Tertiary back-arc rift environment and from scattered late Tertiary and Quaternary volcanic centers in a continental area crossed by active faults, driven by subduction of the Pacific plate and the collision of India and Eurasia. Immobile trace elements and major elements conform very well to each other in classification of the 59 rocks for which complete data are reported and they correctly identify the tectonic setting. LIL-element enrichments of the basalts lie between those of P-MORB and ocean island alkalic basalts, and show a secular increase.87Sr/86Sr ratios of basalts vary from 0.7029 to 0.7048. Alkalic basalts are systematically less radiogenic than geographically coextensive and contemporaneous tholeiitic basalts. Increase of radiogenic Sr with increasing crustal thickness and crustal age and with silica enrichment of the magmas suggests crustal contamination but this is inadequate to explain the LIL-element enrichment patterns and variable LIL-element enrichments. The preferred hypothesis is that the alkalic magmas come from a deeper source, with long-term LIL-element depletion and low Rb/Sr ratio but relatively recent LIL-element enrichment. Conversely the tholeiitic magmas are melts of subcontinental mantle lithosphere that is more LIL-element depleted than the alkalic source, at the time of magma genesis, but has had an elevated Rb/Sr ratio for much of its post-consolidation history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号