首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sm-Nd and Rb-Sr analyses of tektites and other impactites can be used to place constraints on the age and provenance of target materials which were impact melted to form these objects. Tektites have large negative εNd(0) values and are uniform within each tektite group while the εSr(0) are large positive values and show considerable variation within each group. Chemical, trace element, and isotopic compositions of tektites are consistent with production by melting of sediments derived from old terrestrial continental crust. Each tektite group is characterized by a uniform Nd model age,TCHURNd, interpreted as the time of formation of the crustal segment which weathered to form the parent sediment for the tektites: (1) ~1.15 AE for Australasian tektites; (2) ~1.91 AE for Ivory Coast tektites; (3) ~0.9 AE for moldavites; (4) ~0.65 AE for North American tektites, and (5) ~0.9 AE for high-Si irghizites. Sr model ages,TURSr, are variable within each group reflecting Rb-Sr fractionation and in the favorable limit of very high Rb/Sr ratios, approach the time of sedimentation of the parent material which melted to form the tektites. Australasian tektites are derived from ~0.25 AE sediments, moldavites from ~0.0 AE sediments, Ivory Coast tektites from ~0.95 AE sediments. Possible parent sediments of other tektite groups have poorly constrained ages. Our data on moldavites and Ivory Coast tektites are consistent with derivation from the Ries and Bosumtwi craters, respectively. Irghizites are isotopically distinct from Australasian tektites and are probably not related. Sanidine spherules from a Cretaceous-Tertiary boundary clay have initial εNd ~ +2; εSr ~ +5 and are not derived from old continental crust or meteoritic feldspar. They may represent a mixture of basaltic oceanic crust and sediments, implying an oceanic impact. These isotopic results are also consistent with a volcanic origin for the spherules.  相似文献   

2.
In the Samail ophiolite,147Sm-143Nd,87Rb-87Sr, and18O/16O isotopic systems have been used to distinguish between sea-floor hydrothermal alteration and primary magmatic isotopic variations. The Rb-Sr and18O/16O isotopic systems clearly exhibit sensitivity to hydrothermal interactions with seawater while the Sm-Nd system appears essentially undisturbed. Internal isochrons have been determined by the147Sm-143Nd method using coexisting plagioclase and pyroxene and give crystallization ages of 130 ± 12m.y. from Ibra and 100 ± 20 m.y. from Wadi Fizh. These ages are interpreted as the time of formation of the Samail oceanic crust and are older than the inferred emplacement age of 65–85 m.y. The initial143Nd/144Nd ratios for a tectonized harzburgite, cumulate gabbros, plagiogranite, sheeted dikes and a basalt have a limited range in εNd of from 7.5 to 8.6 for all lithologies, demonstrating a clear oceanic affinity and supporting earlier interpretations based on geologic observations and geochemistry. The87Sr/86Sr initial ratios on the same rocks have an extremely large range of from 0.70296 to 0.70650 (εSr = ?19.7 to +30.5) and the δ18O values vary from 2.6 to 12.7. These large variations are clearly consistent with hydrothermal interaction of seawater with the oceanic crust. A model is presented for the closed system exchange of Sr and O, that in principle illustrates how the Sr isotopic data may be utilized to estimate the water/rock ratio and subsequently used to evaluate the temperature of equilibration between the water and silicates from the18O/16O water-rock fractionation.  相似文献   

3.
We report chemical, mineralogic and Rb-Sr data on deep-sea spherules and on particles from an Antarctic Ocean core in which an excess Ir content has been identified.87Sr/86Sr compositions in the deep-sea spherules are determined to 1–2‰ and are in the range 0.730–0.757. The87Sr/86Sr compositions and the Sr concentrations are in the range observed for the majority of chondritic meteorites.84Sr/88Sr ratios are normal to within 1%. Extreme depletion of Rb relative to the chondritic abundance is found in the deep-sea spherules. These data support the inference based on chemical composition and mineralogy that the deep-sea spherules are produced by the ablation or heating of meteoroids in the Earth's atmosphere with substantial loss of Rb by volatilization. Most terrestrial sources for the deep-sea spherules can be excluded, based on the chemical composition and on the Sr isotopic composition. The results on vesicular, Ir-rich particles from the Antarctic Ocean core give87Sr/86Sr in the range 0.703–0.705 and within the range observed for ocean island basalts but significantly above mid-ocean ridge basalts (MORB). A crystalline basaltic particle from this core shows non-radiogenic87Sr/86Sr= 0.701 ± 0.001, in the range observed for MORB and basaltic achondrites. The Sr data on the vesicular particles do not provide positive support for an extraterrestrial provenance for these materials. The basaltic particles cannot reasonably be the primary source of the high Ir concentration and some other lithic component remains to be identified.  相似文献   

4.
Strontium, neodymium isotopic compositions and trace elements of the detrital sediments of Core NS90-103 from South China Sea were analyzed. The results show that the87Sr/86Sr ratios of the detritus during the last glacial range from 0.722 4 to 0.723 0. They are significantly higher than those during the Holocene and the maximum of the last interglacial, which range from 0.721 0 to 0.721 7. This indicates stronger continental weathering during the last glacial. On the other hand, the143Nd/144Nd ratios of these detritus are higher during the last glacial too, similar to the variation of the87Sr/86Sr ratios. The trace element geochemistry of these detritus indicates that more authigenic sediments, such as ferromanganese, during the last glacial may partly contribute to the increase of143Nd/144Nd ratios. Furthermore, much more detritus from continent of South China to the north of the South China Sea may probably contribute to143Nd/144Nd ratios increase during the last glacial, which was the result of the enhancement of northeast monsoon.  相似文献   

5.
The Shabogamo Intrusive Suite comprises numerous bodies of variably metamorphosed gabbro which intrude Archean and Proterozoic sequences at the junction of the Superior, Churchill, and Grenville structural provinces in western Labrador. Combined Sm-Nd and Rb-Sr systematics in two bodies, ranging from unmetamorphosed to lightly metamorphosed, document a crystallization age of about 1375 m.y., and suggest that both bodies crystallized from magmas with similar Nd and Sr isotopic compositions. This age is in accordance with the existence of a regional magmatic event in the Churchill Province at approximately 1400 m.y.Rb-Sr systematics in two bodies of amphibolite-grade gabbro suggest a regional metamorphic event at about 950 m.y., corresponding to the waning stages of Grenville activity. Sm-Nd systematics in these high-grade bodies are affected to a much lesser degree than Rb-Sr.Initial ratios for143Nd/144Nd and87Sr/86Sr are lower and higher, respectively, than bulk earth values at 1375 m.y. Both these displacements are in the direction of older crustal material at 1375 m.y., and a model is proposed to produce the Shabogamo magma by mixing a mantle-derived magma with a partial melt of crustal rocks (approximately 4: 1 by volume). Young volcanic rocks with anomalous Nd and Sr isotopic ratios, which have previously been taken as evidence for “enriched” mantle, may be interpreted similarly.  相似文献   

6.
A record of changes in Nd and Sr isotopic composition of the eolian deposits from the central Loess Plateau has been determined for the past 8 Ma. The isotopic records of the silicate fraction of the Quaternary and Tertiary eolian deposits allow interpreting the interplay between the Sr isotopic variations in the eolian deposits and the late Cenozoic tectonic and climatic changes. The results indicate that the temporal variations of Nd and Sr isotopes show remarkable changes around the beginning of the Quaternary. The lower values of the 143Nd/144Nd and the decreasing trend of the 87Sr/86Sr ratios after 2.58 Ma ago are attributed to the additions of relatively younger crust materials in response to the climatic cooling and the late Cenozoic uplift induced glacial grinding in the high orogenic belts in central Asia. In this context, the substantial changes in climate and tectonics have modified dust sources significantly, and the Quaternary loess forming processes are preferentially sampling relatively younger and high relief crust materials than that of the Tertiary Red Clay.  相似文献   

7.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

8.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

9.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

10.
The Deccan flows at Mahabaleshwar are divisible into a lower and an upper group, based on Nd and Sr isotopic ratios, which define two correlated trends. This distinction is supported by incompatible element ratios and bulk compositions. The data reflect contamination in a dynamic system of magmas from an LIL-depleted,εJUV ≥ +8 mantle by two different negative εJUV endmembers, one undoubtedly continental crust, the other either continental crust or enriched mantle. The depleted mantle source, anomalously high in (87Sr/86Sr), may have been in the subcontinental lithosphere or a region of rising Indian Ocean MORB mantle.  相似文献   

11.
3He/4He ratios have been obtained for basaltic, intermediate and acid volcanic glasses from Iceland. Basaltic glasses exhibit a wide range of 3He/4He ratios (4 < R/Ra < 24), which is consistent with the previously recorded range for Icelandic geothermal systems. In contrast the glasses with intermediate and acid compositions have 3He/4He values close to the atmospheric value (Ra) with the exception of a 13-Ma sample which has R/Ra= 0.07. 87Sr/86Sr, 143Nd/144Nd ratios and δ18O values are reported for the same samples.3He/4He does not correlate with either 87Sr/86Sr or 143Nd/144Nd ratio and radiogenic components of He, Sr and Nd have apparently been decoupled. Interaction of Icelandic magmas with hydrothermally altered and older Icelandic crust is the preferred explanation for variable and often low δ18O values. It is suggested that primary 3He/4He ratios may have been modified by incorporation of radiogenic helium developed within the Icelandic crust to impose a larger range of 3He/4He ratios on the erupted products than was actually inherited from the mantle beneath Iceland. Intermediate and acid samples have all been severely contaminated by atmospheric helium, most probably at very shallow levels within the crust.  相似文献   

12.
Os, Sr, Nd and Pb isotope data were collected from a profile across the Cretaceous-Tertiary (K-T) boundary layer at Stevns Klint, Denmark. ?Nd [T=65 Ma] values from within the boundary layer (Fish Clay) are lower by ∼1 ? unit than those of the underlying Maastrichtian limestone and the overlying Danian chalk sequences. Systematic profile-upward changes of Pb, Sr and Os isotopic compositions and concentrations in the boundary layer cannot be accounted for by in situ growth of daughter products since the sedimentation of the Fish Clay. While Os, Nd and Pb isotopes indicate the admixing of less radiogenic components to the Fish Clay, Sr isotopes show elevated radiogenic values in the boundary layer, relative to the carbonate sequences beneath and above it. The sudden change in lithophile (e.g., Sr, Pb and Nd) isotope compositions at the base of the Fish Clay and profile-upward trends of 87Sr/86Sr and 206Pb/204Pb ratios towards those of the overlying Danian chalk are interpreted to reflect recovery from enhanced, acid rain-induced continental (local?) weathering input to the seawater. However, a continental crustal source is invalid for the siderophile element Os. In the light of evidence from chromium isotopes for a cosmic origin of the platinum group elements (PGEs) and certain moderately siderophile elements (Cr, Ni, Co, V) in K-T boundary sediments, including Stevns Klint [Shukolyukov and Lugmair, Science 282 (1998) 927-929], and supported by the finding of projectile debris [Bauluz et al., Earth Planet. Sci. Lett. 182 (2000) 127-136] and the occurrence of abundant Ni-rich spinel at many K-T sites [Robin et al., Nature 363 (1993) 615-617; Kyte, Nature 396 (1998) 237-239], we favor to explain the sudden drop of 187Os/188Os ratios from 0.210 to 0.160 at the K-T boundary to derive from global fall-out of extraterrestrial matter. The present 186Os/188Os ratio of 0.119836±0.000004 measured in the basal layer of the Fish Clay is within the uncertainty a chondritic value. We therefore exclude the possibility of a major contribution of PGEs to the sediment from iron meteorites. Chondrite-normalized (Ru/Ir)N ratios of ∼0.95±0.14 and (Os/Ir)N ratios of ∼0.93±0.14 in the Fish Clay cannot distinguish between abundance ratios of different types of chondrites, and strongly sub-chondritic (Pt/Ir)N ratios of ∼0.62±0.09 (2σ) suggest differential PGE remobilization through the sedimentary column (and consequently the alteration of inter-element ratios). PGEs and the moderately siderophile elements Cr, Ni, V, and Co form an elemental association with systematically upward-decreasing concentrations in the Fish Clay. Low Co/Ni ratios of ∼0.12 in the Fish Clay relative to values of ∼0.35 in the over- and underlying carbonate sequences support mixing of meteorite-derived (Co/Ni ∼0.05) and terrestrial upper mantle/crustal (Co/Ni >∼0.3) sources. While lithophile element isotope data indicate an increased continental crustal input to the Fish Clay at the K-T transition, the uncertainty with respect to possible post-depositional alteration of abundance patterns of siderophile and moderately siderophile elements - though not affecting the chondritic isotopic composition of Os - does not allow confirmation of indications from chromium isotopes for a carbonaceous (CV-type) meteorite as the preferred K-T impactor type by Shukolyukov and Lugmair [Science 282 (1998) 927-929].  相似文献   

13.
We have determined the concentrations and isotopic compositions of Sr and Nd in hydrothermal fluids from 21°N, East Pacific Rise and Guaymas Basin, Gulf of California. The purest solutions analyzed from 21°N exhibit a small range in Sr concentration between individual vents from 5.8 to 8.7 ppm, close to normal seawater Sr concentrations. They exhibit a small range in87Sr86Sr fromεSr(0) = −13.4 to −17.7, corresponding toεSr(0) ≈ −18 ± 2 in the pure hydrothermal end-member. These results indicate extensive but not complete isotopic exchange with Sr in the depleted oceanic crust (εSr(0) = −31.8) and suggest that Sr concentrations in these solutions are buffered. In contrast, the concentration and isotopic composition of Nd in solutions show large variations between vents. The concentration of Nd ranges from 20 to 336 pg/g (6–100 times seawater Nd concentrations). The isotopic composition ranges fromεNd(0) = −3.6 (similar to Pacific seawater) to +7.9. Many samples show substantial contributions from MORB, but all haveεNd(0) well below MORB at this locality (εNd(0) = +9.7) in spite of very large enrichments in Nd concentrations. While complete isotopic exchange withwater/rock≈ 2 or exchange with anomalous oceanic crust can explain the Sr data, the Nd data require exchange with a reservoir havingεNd(0) < Pacific seawater. Low-temperature reactions with metalliferous sediments on the ridge flanks may provide such a source. Both Sr and Nd in the Guaymas Basin solution are very different from21°N. εSr(0) = +11.0 andεNd(0) = −11.4 and are consistent with the fluid exchanging Sr and Nd with heated sediments having a substantial component of old continental detritus. Some irregularities in the Nd isotopic data reported here indicate that there must be a problem of contamination for some ultra-low-level trace elements during sample collection and processing which requires further attention.Using a simple box model, the estimates for hydrothermal Nd fluxes are compared with fluxes which would be required to maintain the relatively radiogenic value ofεNd(0) ≈ −3 in the Pacific against the influx of more negative Antarctic waters (εNd(0) ≈ −9). It is shown that the hydrothermal flux of Nd from mid-ocean ridges falls far short of that necessary to maintain the isotopic balance. This indicates that weathered material from volcanic terranes (εNd(0) ≈ +7) is the most reasonable major source of radiogenic Nd in the Pacific.  相似文献   

14.
Seventeen whole-rock samples, generally taken at 25–50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for87Sr/86Sr ratios, Sr and Rb concentrations, and18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330–560 m interval, 5 samples have a restricted range of 0.70255–0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260–330 m interval, approximately intermediate Sr isotopic ratios are found.δ18O values (‰) range from 6.4 to 7.8 in the upper 260 m, 6.2–6.4 in the 270–320 m interval, and 5.8–6.2 in the 320–560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320–560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration.The higher87Sr/86Sr and18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater(87Sr/86Sr=0.7091) increased basalt87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock δ18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.  相似文献   

15.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

16.
Sr and Nd isotope analyses are presented for Tertiary continental alkaline volcanics from Cantal, Massif Central, France. The volcanics belong to two main magma series, silica-saturated and silica-undersaturated (with rare nephelinites). Trace element and isotopic data indicate a common source for the basic parental magmas of both major series; the nephelinites in contrast must have been derived from a mantle source which is isotopically and chemically distinct from that which gave rise to the basalts and basanites.87Sr/86Sr initial ratios range from 0.7034 to 0.7056 in the main magma series (excluding rhyolites) and143Nd/144Nd ratios vary between 0.512927 and 0.512669; both are correlated with increasing SiO2 in the lavas. The data can be explained by a model of crustal contamination linked with fractional crystallisation. This indicates that crustal magma chambers are the sites of differentiation since only rarely do evolved magmas not show a crustal isotopic signature and conversely basic magmas have primitive isotopic ratios unless they contain obvious crustal-derived xenocrysts. Potential contaminants include lower crustal granulites or partial melts of upper crustal units. Equal amounts of contamination are required for both magma series, refuting hypotheses of selective contamination of the silica-saturated series.The isotopic characteristics of the apparently primary nephelinite lavas demonstrates widespread heterogeneity in the mantle beneath Cantal. Some rhyolites, previously thought to be extremely contaminated or to be crustally derived, are shown to have undergone post-emplacement hydrothermal alteration.  相似文献   

17.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

18.
Diverse87Sr/86Sr and143Nd/144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB (87/Sr86Sr 0.70366;143Nd/144Nd 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher87Sr/86Sr ( 0.7038) and lower 143Nd/144Nd ( 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB.Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high87Sr/86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( εNd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have SrNd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.  相似文献   

19.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

20.
Oxygen isotope data are reported for 27 igneous rocks of Mesozoic to Quaternary age from the Central Andes. 26–29°S. The plutonic rocks, and most of the volcanics, have δ18O values between 6.2 and 8.3‰.The whole-rock δ18O values show a weak correlation with initial87Sr/86Sr data. This O-Sr array differs from documented trends for calc-alkaline plutonic suites from California, Scotland and northern Italy, but overlaps with data for volcanic and plutonic rocks from Ecuador, northern Chile and southern Perú.The oxygen isotope results indicate that the magmas evolved without significant contamination from supracrustal rocks (e.g., rocks that experienced18O enrichment during surficial weathering). The available O, Sr and Pb isotopic data for these rocks are best explained by magma generation in the upper mantle or lower crust. From the Late Mesozoic on, the87Sr/86Sr values were modified at depth by isotopic exchange between the magma and a continually thickening crust of plutonic rocks of Late Precambrian to early Mesozoic age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号