首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The concentrations of 25 major, minor and trace elements have been determined in four clasts, a metal-rich inclusion and two dark metal-poor inclusions from the Abee enstatite chondrite. The clasts are heterogeneous, displaying 2-fold enrichments or depletions in some elements. The data suggest that there are two generations of metal, one with low, the other with high concentrations of refractory siderophiles. The other elemental patterns can be understood in terms of variations in the abundance of major minerals. We infer that Sc and Mn are located largely in the niningerite ((Fe,Mg)S), V in the troilite (FeS) and rare earth elements in the oldhamite (CaS).Heterogeneities among the clasts are probably primary, resulting from the accretion-agglomeration process, although shock processes in a regolithic setting remain a possibility provided that they were followed by a period of metamorphism sufficient to erase petrologic evidence.In the dark inclusions the concentrations of the rare earths, Eu excepted, are 4 × higher than mean EH levels; this infers enhanced amounts of CaS. The dark inclusions are low in siderophiles, Sc, Mn, K, Na and Al, implying low amounts of metal, niningerite and feldspar. The origin of the dark inclusions is unclear; they do not appear to be the result of a simple, single-stage process.  相似文献   

2.
Constraints are reported on the thermal history of the constituents of the Abee enstatite chondrite. From thermal experiments on laboratory-prepared alloys, and on actual samples of the meteorite, it is concluded that the metal phase of Abee cooled from above 700°C to room temperature in less than ten hours.  相似文献   

3.
Nuclear track records in fourteen samples taken from different locations of a cut-slab of the Abee enstatite chondrite were studied to determine its pre-atmospheric mass and to delineate its cosmic ray exposure history. The measured track densities in different samples range from 104 to 106 cm?2. No significant variations in track densities for individual grains from a given location was found. Excess tracks of fissionogenic origin were found near the grain edges, and across cleavage planes in eight enstatite grains out of ~ 300 grains analysed in the present work. The compaction age of the meteorite could not be obtained due to the absence of suitable oldhamite-enstatite contacts in thick sections. The track data rule out pre-irradiation of any of the analysed samples with shielding less than a few tens of centimeter. The iso-track-density contours on the plane of the slab imply an asymmetric ablation of the Abee chondrite during its atmospheric transit. A spherical body having a radius of ~ 30 cm closely approximates the pre-atmospheric shape and size of the Abee meteorite. The mass loss during ablation was ~ 70% of the original mass.  相似文献   

4.
The Abee E4 enstatite chondrite breccia consists of clasts (many rimmed by metallic Fe, Ni), dark inclusions and matrix. The clasts and matrix were well equilibrated by thermal metamorphism, as evidenced by uniform mineral compositions, recrystallized chondrules, low MnO content of enstatite and high abundance of orthoenstatite. The clasts acquired their metal-rich rims prior to this metamorphic episode. The occurrence in Abee of relatively unmetamorphosed dark inclusions, clasts with nearly random magnetic orientations and a matrix with a uniform magnetic orientation [18,19] indicates that clast and matrix metamorphism occurred prior to the agglomeration of the breccia.The dark inclusions are an unusual kind of enstatite chondritic material, distinguished from the clasts and matrix by their relative enrichments in REE [21–23], low relative abundances of kamacite, total metallic Fe, Ni and silica, lower niningerite/(total sulfide) ratios, high relative abundances of oldhamite and martensite, smaller euhedral enstatite, more heterogeneous enstatite and metallic Fe, Ni, more calcic enstatite and more nickeliferous schreibersite.We propose the following model for the petrogenesis of the Abee breccia: The maximum metamorphic temperature of breccia parent material was?- 840°C (the minimum temperature of formation of Abee niningerite) and perhaps near 950–1000°C (the Fe-Ni-S eutectic temperature). Euhedral enstatite crystals in metallic Fe, Ni- and sulfide-rich areas grew at these metamorphic temperatures into pliable metal and sulfide. Breccia parent material was impact-excavated from depth, admixed with dark inclusions and rapidly cooled (700 to 200°C in about 2 hours) [15]. During this cooling, clast and matrix material acquired thermal remanent magnetization. Random conglomeration of clasts and unconsolidated matrix materials caused the clasts to have random magnetic orientations and the matrix areas to have net magnetic intensities of zero (due to the cancellation of numerous randomly oriented magnetic vectors of equal intensity in the matrix). A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientations of the clasts to be somewhat less random. The Abee breccia was later consolidated, possibly by shock or by shallow burial and very long-period/low-temperature (< 215°C) metamorphism.  相似文献   

5.
Determinations of40Ar/39Ar and U-Th-Pb are reported for three clasts from the Abee (E4) enstatite chondrite, which has been the object of extensive consortium investigations. The clasts give40Ar/39Ar plateau ages and/or maximum ages of 4.5 Gy, whereas two of the clasts give average ages of 4.4 Gy. Within the range of 4.4–4.5 Gy these data do not resolve any possible age differences among the three clasts.206Pb measured in these clasts is only ~1.5–2.5% radiogenic, which leads to relatively large uncertainties in the Pb isochron age and in the207Pb/206Pb model ages. The Pb data indicate that the initial207Pb/206Pb was no more than 0.08±0.07% higher than this ratio in Can?on Diablo troilite. The U-Th-Pb data are consistent with the interpretation that initial formation of these clasts occurred 4.58 Gy ago and that the clasts have since remained closed systems, but are contaminated with terrestrial Pb. The40Ar/39Ar ages could be gas retention ages after clast formation or impact degassing ages. The thermal history of Abee deduced from Ar data appears consistent with that deduced from magnetic data, and suggests that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, and experienced no appreciable subsequent heating.  相似文献   

6.
The noble gas components and their distributions were studied in a variety of clasts and in separated phases of clast 2,2 using a detailed stepwise release program. The results show the presence of two distinct trapped components: one appears to be similar to Kenna-type gas [28], the other is characterized by element ratios36Ar/84Kr < 370 and36Ar/132Xe ≥ 900 and is termed Ar-rich component. Silicate phases are identified as carriers of both components; but since they are differentially released, the results imply that multiple carrier phases are required. Unlike results from other meteorites, HF attack removes all but 15% of the xenon. Substantial amounts of trapped and, in many cases, unfractionated air were observed, apparently in reaction products of reduced and easily oxidized minerals. The129Xer release systematics imply the presence of two distinct carriers of extinct129I and suggest lithophilic behavior of I in Abee. The U/Th-4He and K-40Ar data are consistent with a 4.5 Gy age. Amounts of spallogenic He, Ne and Ar yield a cosmic ray exposure age of 8 My. We compare the Ar-rich component to noble gas abundances in planetary atmospheres and we discuss a suggested model of origin.  相似文献   

7.
Seven samples of the unique St. Mesmin meteorite have been analyzed by instrumental and radiochemical neutron activation analysis for Na, Ca, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, Ge, Se, In, Sm, Yb, Ir and Au. St. Mesmin is unique in being the only ordinary chondrite known to contain an unmelted xenolith of another ordinary chondrite. Data for two host matrix samples and three light clasts are consistent with their classification as LL chondrite material. The composition of the large dark xenolith confirms earlier evidence that it is an H chondrite; volatile abundances are consistent with it being highly shocked, petrologic type-4 material. In an olivine microporphyry, siderophile abundances are mostly about 0.13 times LL abundances, an apparent indication of metal loss during the shock melting which produced the clast. As in other regolithic chondrites, the dark host has higher contents of highly volatile elements than do the light clasts. We suggest that this results from a combination of differences in intensity of preexisting metamorphism as well as a redistribution of volatiles during regolith gardening.The H-group xenolith in St. Mesmin is a relatively recent addition to the parent body (< 1.4 Ga ago), but it is argued that this does not require regolith activity at that time. Rather the view is supported that the regolith period occurred very early in the meteorite's history (&gsim;4.0 Ga ago) and may have been related to the growth of the parent body. The H-group fragment may be part of the projectile whose impact excavated the St. Mesmin meteoroid from the LL parent body.  相似文献   

8.
The Adhi Kot EH4 enstatite chondrite breccia consists of silica-rich clasts (12+mn; 5 vol.%), chondrule-rich clasts (55+mn; 10 vol.%) and matrix (35+mn; 10 vol.%). The silica-rich clasts are a new kind of enstatite chondritic material, which contains more cristobalite (18–28 wt.%) than enstatite (12–14 wt.%), as well as abundant niningerite and troilite. The bulk atomic Mg/Si ratios of the clasts (0.22–0.40) are much lower than the average for enstatite chondrites (0.79). Kamacite and martensite (with 8–11 wt.% Ni and a martensitic structure) occur in all three breccia components. The clasts have kamacite-rich rims, and kamacite-rich aggregates occur in the matrix.A unidirectional change in the ambient pS2/pO2 ratio in the region of the solar nebula where Adhi Kot agglomerated can explain many of the breccia's petrologic features. If this region initially had a very high pS2/pO2 ratio in a gas of non-cosmic composition, sulfurization of enstatite and metallic Fe (e.g., MgSiO3 + 2Fe + C + 3H2S = MgS + SiO2 + 2FeS + H2O + CH4) may have occurred, producing abundant niningerite, free silica and troilite at the expense of enstatite and metallic Fe. The Ni content of the residual metal would have increased, perhaps to ~ 8–10 wt.%. The silica-rich clasts agglomerated under these conditions; a significant fraction of the originally produced niningerite was lost (perhaps by aerodynamic size-sorting processes), lowering the clasts' bulk Mg/Si ratios.The pS2/pO2 ratio then decreased (perhaps because of infusion of additional H2O) and sulfurization of metallic Fe and enstatite ceased. The chondrule-rich clasts agglomerated under these conditions, acquiring little free silica and niningerite. An episode of chondrule formation occurred at this time (by melting millimeter-sized agglomerates of this relatively silica-poor enstatite chondrite material and concomitant fractionation of an immiscible liquid of metallic Fe,Ni and sulfide). The chondrule-rich clasts agglomerated many such chondrules. Subsequently, the matrix agglomerated, acquiring the few remaining chondrules. Kamacite-rich aggregates formed, after the cessation of metal sulfurization, and agglomerated with the matrix. The kamacite-rich clast rims were acquired at this time.The components of Adhi Kot accreted to the EH chondrite parent body, where the breccia was assembled, buried beneath additional accreting material, and metamorphosed at temperatures of ? 700°C. Impact-excavation of the breccia and deposition onto the surface caused the formation of martensite from taenite inside the clasts and the matrix. At the surface, impact-melting produced an albite glass spherule, which was incorporated into the matrix. However, the absence of solar-wind-implanted rare gases in bulk Adhi Kot indicates that the breccia spent little time in a regolith.  相似文献   

9.
Blithfield (EL6) is one of five known enstatite chondrite breccias. It consists of troilite-rich clasts (35 ± 5vol.%) embedded in an extremely metallic Fe,Ni-rich matrix (65 ± 5 vol.%) that contains metal nodules up to 17 mm in size. Clasts and matrix agglomerated independently in the solar nebula under conditions of high and lowpS2/pO2 ratios, respectively. The matrix accreted to an EL chondrite planetesimal and was metamorphosed to~ 1000°C, above the FeNiS eutectic; chondrule textures were obliterated. The S-rich eutectic melt was lost from the matrix. The matrix material was buried to a depth of at least 3 km; accreting troilite-rich material was incorporated into the matrix as clasts. The breccia cooled through~ 500°C at 1000–10,000°C/Myr. After cooling below~ 500°C, Blithfield was quenched, possibly by impact excavation from depth and deposition onto the surface.Clasts or inclusions that are enriched in sulfide and depleted in metallic Fe,Ni are common in brecciated enstatite chondrites. Variations in thepS2/pO2 ratio in the nebular regions where these materials formed may explain many of their petrologic properties. The silica-rich clasts in Adhi Kot (EH4) formed at very highpS2/pO2ratios(> 1027); niningerite, free silica and troilite were produced from the sulfurization of enstatite and metallic Fe. The troilite-rich clasts in Blithfield and Atlanta (EL6) as well as the troilite-rich regions of the Hvittis (EL6) matrix formed at somewhat lowerpS2/pO2 ratios where sulfurization of metalic Fe produced troilite. The Ni content of the residual metal increased, forming some metal of martensitic composition. The dark inclusions in Abee (EH 4), which contain up to 9 wt.% oldhamite, formed at highpS2/pO2 ratios in the presence of an additional Ca-rich component.  相似文献   

10.
11.
Petrographic and chemical studies of the Qingzhen chondrite strongly suggest that it is the most highly unequilibrated (type 3) enstatite chondrite recognized so far. Qingzhen contains abundant, well-defined chondrules, some of which were incompletely molten during the chondrule formation process. The relict olivine grains within these chondrules contain dusty inclusions of almost pure metallic Fe, which appear to be the in-situ reduction product of the fayalitic component of the olivine. The reduction process presumably took place at the time of chondrule formation and the chondrule precursor material must have been more oxidized than average enstatite chondrite material. We believe that this oxidized material may have formed at the enstatite chondrite formation location in the solar nebula, provided fluctuations in the degree of oxidation of the nebular gas existed at such locations. Reheating of this material under more reducing conditions would lead to the observed reduction of the olivine. Igneous olivines within chondrules always contain detectable amounts of CaO, while relict olivines are essentially CaO-free. This seems to suggest that the relict olivines did not originate during a previous igneous process of chondrule formation and might represent condensation products from the early solar nebula.  相似文献   

12.
The δ18O values of eighteen marine evaporites of Precambrian to Recent ages were found to vary from +8 to 25‰ relative to SMOW, while the δ34S values previously measured by Thode and Monster [2] vary from +10 to +38‰ relative to meteoritic sulfur. The results strongly suggest that the δ18O value of ocean sulfate varied with geologic age with a minimum at the Permian age.  相似文献   

13.
We report 50V/51V abundance ratio measurements and V concentrations for the dark portions of six gas-rich meteorites. These data and previous results for meteoritic, lunar and terrestrial samples indicate the same vanadium isotopic composition within the limits of error and, hence, place severe limits on possible differences in the irradiation histories of these materials. After application of necessary corrections, an average absolute abundance ratio of 50V/51V= (2.425 ± 0.030) × 10?3 is obtained.  相似文献   

14.
Neon isotopic ratios measured in olivine and basaltic glass from Iceland are the most primitive observed so far in terrestrial mantle-derived samples. Ratios were measured in gas released from olivine and basaltic glass from a total of 10 samples from the Reykjanes Peninsula, Iceland, and one sample from central Iceland. The neon isotopic ratios include solar-like, mid-ocean ridge basalt (MORB)-like and atmospheric compositions. Neon isotopic ratios near the air–solar mixing line were obtained from the total gas released from glass separates from five samples. MORB-like neon isotopic compositions were measured in the total gas released from olivine and glass separates from four samples. Although there is clear evidence for a solar neon component in some of the Icelandic samples, there is no corresponding evidence for a solar helium ratio (320Ra>3He/4He>100Ra). Instead, 3He/4He ratios are mainly between 12±2(Ra) and 29±3(Ra), similar to the range observed in ocean island basalts, indicating that the He–Ne isotopic systematics are decoupled. The mantle source of Icelandic basalts is interpreted to be highly heterogeneous on a local scale to explain the range in observed helium and neon isotopic ratios. The identification of solar-like neon isotopic ratios in some Icelandic samples implies that solar neon trapped within the Earth has remained virtually unchanged over the past 4.5 Ga. Such preservation requires a source with a high [Nesolar]/[U+Th] ratio so that the concentration of solar neon overwhelms the nucleogenic 21Ne* produced from the decay of U and Th in the mantle over time. High [Nesolar]/[U+Th] ratios are unlikely to be preserved in the mantle if it has experienced substantial melting. An essentially undegassed primitive mantle component is postulated to be the host of the solar neon in the Icelandic plume source. Relatively small amounts of this primitive mantle component are likely to mix with more depleted and degassed mantle such that the primitive mantle composition is not evident in other isotopic systems (e.g. strontium and neodymium). The lower mantle plume source is inferred to be relatively heterogeneous owing to being more viscous and less well stirred than the upper mantle. This discovery of near-solar neon isotopic ratios suggests that relatively primitive mantle may be preserved in the Icelandic plume source.  相似文献   

15.
We developed, and applied in two sites, novel methods to measure ground water-borne nitrogen loads to receiving estuaries from plumes resulting from land disposal of waste water treatment plant (WWTP) effluent. In addition, we quantified nitrogen losses from WWTP effluent during transport through watersheds. WWTP load to receiving water was estimated as the difference between total measured ground water-transported nitrogen load and modeled load from major nitrogen sources other than the WWTP. To test estimated WWTP loads, we applied two additional methods. First, we quantified total annual waste water nitrogen load from watersheds based on nitrogen stable isotopic signatures of primary producers in receiving water. Second, we used published data on ground water nitrogen concentrations in an array of wells to estimate dimensions of the plume and quantify the annual mass of nitrogen transported within the plume. Loss of nitrogen during transport through the watershed was estimated as the difference between the annual mass of nitrogen applied to watersheds as treatment plant effluent and the estimated nitrogen load reaching receiving water. In one plume, we corroborated our estimated nitrogen loss in watersheds using data from multiple-level sampling wells to calculate the loss of nitrogen relative to a conservative tracer. The results suggest that nitrogen from the plumes is discharging to the estuaries but that substantial nitrogen loss occurs during transport through the watersheds. The measured vs. modeled and stable isotopic approaches, in comparison to the plume mapping approach, may more reliably quantify ground water-transported WWTP loads to estuaries.  相似文献   

16.
Nitrogen contents range from a few parts per million in ordinary chondrites and achondrites to several hundred parts per million in enstatite chondrites and carbonaceous chondrites. Four major isotopic groups are recognized: (1) C1 and C2 carbonaceous chondrites have δ15N of+30to+50%.; (2) enstatite chondrites have δ15N of?30to?40‰; (3) C3 chondrites have low δ15N with large internal variations; (4) ordinary chondrites have δ15N of?10to+20‰. The major variations are primary, representing isotopic abundances established at the time of condensation and accretion. Secondary processes, such as spallation reactions, solar wind implantation and metamorphic loss may cause small but observable isotopic variations in particular cases. The large isotopic difference between enstatite chondrites and carbonaceous chondrites cannot be accounted for by equilibrium condensation from a homogeneous nebular gas, and requires either unusually large kinetic effects, or a temporal or spatial variation of isotopic composition of the nebula. Nitrogen isotopic heterogeneity in the nebula due to nuclear processes has not been firmly established, but may be required to account for the large variations found within the Allende and Leoville meteorites. The unique carbonaceous chondrite, Renazzo, has δ15N of+170%., which is well beyond the range of all other data, and also requires a special source. It is not yet possible, from the meteoritic data, to establish the mode of accretion of nitrogen onto the primitive Earth.  相似文献   

17.
Pristine granite clasts in Apollo-14 breccias 14321 and 14303 have estimated masses of 1.8 and 0.17 g, respectively. The 14321 clast is ~ 60% K-feldspar and 40% quartz, with traces of extremely Mg-poor mafic silicates and ilmenite. The 14303 clast is roughly 33% plagioclase, 32% K-feldspar, 23% quartz, 11% pyroxene, and 1% ilmenite; pyroxene and ilmenite are moderately Mg-rich; plagioclase and pyroxene are strongly zoned. Both clasts are severely brecciated, but monomict (pristine). Both have abundant graphic intergrowths of K-feldspar with quartz. Unlike the majority of similar Earth rocks, both clasts are devoid of hydrous phases. The bulk composition of the 14321 clast is similar to those of several other lunar granitic samples, but the 14303 clast is unique: it bears as close a resemblance to KREEP as it does to other lunar granites. Silicate liquid immiscibility may explain why the granites are low in REE relative to KREEP.  相似文献   

18.
Total organic carbon (TOC), total nitrogen (TN) and their δ(13)C and δ(15)N values were determined for 42 surface sediments from coastal Bohai Bay in order to determine the concentration and identify the source of organic matter. The sampling sites covered both the marine region of coastal Bohai Bay and the major rivers it connects with. More abundant TOC and TN in sediments from rivers than from the marine region reflect the situation that most of the terrestrial organic matter is deposited before it meets the sea. The spatial variation in δ(13)C and δ(15)N signatures implies that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Taking the area as a whole, surface sediments in the marine region of coastal Bohai Bay are dominated by marine derived organic carbon, which on average accounts for 62±11% of TOC.  相似文献   

19.
Experiments on MgSiO3 enstatite were conducted in the pressure range from 13 to 18 GPa under hydrous conditions in order to clarify the effect of water on the melting phase relations of enstatite at pressures corresponding to the Earth’s mantle transition zone. In some previous experiments [Geol. Soc. Am. Bull. 79 (1968) 1685; Phys. Earth Planet. Inter. 85 (1994) 237], incongruent melting behavior to form Mg2SiO4 forsterite and SiO2 enriched liquid up to 5 GPa was observed, and congruent melting behavior at pressures up to 12 GPa was observed. Under hydrous conditions, we found that the melting reaction changes from congruent to incongruent at around 13.5 GPa. Liquid formed above 13.5 GPa is enriched in MgO component relative to MgSiO3 because it coexists with stishovite (SiO2). Moreover, the solidus temperature decreases drastically at around 13.5 GPa, in unison with the change in the melting reaction. The solidus temperature is about 1400 °C at 13 GPa, but approximately 900 °C at 15 GPa. Our results show that the liquidus phase changes from clinoenstatite to stishovite with increasing pressure and water content above 13.5 GPa. MgSiO3 enstatite is one of the major constituent minerals in the Earth’s mantle, and it is expected that MgO-enriched liquid will be generated in the transition zone if water is present.  相似文献   

20.
Elemental carbon and nitrogen levels and isotope ratios were assessed in different biological compartments of a Northwest (NW) Mediterranean bay to trace the various sources of nutrient input from natural (river runoffs) and anthropogenic (harbor outflows, fish farms and urban sewage outfall) sources. Samples from transplanted mussels and natural sea grass communities (Posidonia oceanica leaves and epiphytes) were harvested from different locations throughout the bay during the touristic summer and rainy seasons. The results from the nitrogen analysis revealed that sewage and harbor outflow promote higher nitrogen levels, enrichment of 15N in the tissues, and a higher seasonal variability in sea grass and epiphytes. In mussel tissues, the δ15N was also influenced by sewage and harbor outflow, whereas δ13C was influenced by terrestrial inputs. These results suggest that natural and anthropogenic nutrient inputs have a temporary and localized influence and affect the sensitivity of natural isotopic ratios to changes in hydrologic conditions, especially to rain and tourism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号