首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a hot basaltic magma is emplaced into continental crust or a pre-existing silicic magma chamber, the processes of assimilation with fractional crystallization (AFC) are likely to control the liquid line of descent of the magma. These processes are particularly important at the floor of the magma chamber because evolved light liquids generated by floor melting readily mix with the overlying basaltic magma. In order to clarify the effects of temperature and composition of the floor on the AFC processes, we experimentally investigated simultaneous melting and crystallization of a NH4Cl–H2O binary eutectic system. In the experiments, evolution of temperature and compositional profiles of a hot solution overlying a cold solid mixture of variable initial temperatures and compositions were measured. The initial NH4Cl concentrations of solid and liquid are chosen to be higher than the eutectic composition, such that the density change of the experimental material by crystallization and melting is qualitatively the same as that of natural magmas and crusts. The results show that a mushy layer forms at the floor due to simultaneous crystallization and (partial) melting and that the liquid evolves due to mixing with liquids released by crystallization and melting. The ratio of melting mass to crystallization mass (M/C ratio) depends on the initial floor temperature and composition. As the initial floor temperature decreases, the rate of melting largely decreases, so that the M/C ratio becomes smaller. As the initial NH4Cl concentration of the solid floor decreases, the degree of partial melting of the floor increases; however, it does not necessarily result in an increase in the M/C ratio. The higher melt fraction of the mushy layer increases permeability within the mushy layer, so that vertical exchange between the liquid in the mushy layer and the more concentrated overlying liquid is enhanced. This effect promotes crystallization in the mushy layer, and decreases the M/C ratio. It is suggested that the M/C ratio during AFC processes depends on details of the mixing process in the liquid layer such as spacing and meandering of buoyant plumes.  相似文献   

2.
Zircon stability in silicate melts—which can be quantitatively constrained by laboratory measurements of zircon saturation—is important for understanding the evolution of magma.Although the original zircon saturation model proposed by Watson and Harrison(Earth Planet Sci Lett 64(2):295-304,1983) is widely cited and has been updated recently,the three main models currently in use may generate large uncertainties due to extrapolation beyond their respective calibrated ranges.This paper reviews and updates zircon saturation models developed with temperature and compositional parameters.All available data on zircon saturation ranging in composition from mafic to silicic(and/or peralkaline to peraluminous)at temperatures from 750 to 1400℃ were collected to develop two refined models(1 and 2) that may be applied to the wider range of compositions.Model 1 is given by lnC_(Zr)(melt)=(14.297±0.308)+(0.964 ± 0.066).M-(11113±374)/r,and model 2 given by lnC_(Zr)(melt)=(18.99±0.423)-(1.069±0.102)·lnG-(12288±593)/T,where C_(Zr)(melt) is the Zr concentration of the melt in ppm and parameters M [=(Na+K+2 Ca)/(Al·Si)](cation ratios) and G [=(3·Al_2 O_3+SiO_2)/(Na_(2-)O+K_2 O+CaO+MgO+FeO)](molar proportions)represent the melt composition.The errors are at one sigma,and T is the temperature in Kelvin.Before applying these models to natural rocks,it is necessary to ensure that the zircon used to date is crystallized from the host magmatic rock.Assessment of the application of both new and old models to natural rocks suggests that model 1 may be the best for magmatic temperature estimates of metaluminous to peraluminous rocks and that model 2 may be the best for estimating magmatic temperatures of alkaline to peralkaline rocks.  相似文献   

3.
4.
The relation of magma and crustal activity has been studied from spatial distribution of 3He/4He ratios of gas and/or water samples over the Izu Peninsula, where significant crustal deformation associated with seismic swarm activities has been observed since 1970s. The air-corrected values of 3He/4He ratios ranged from 3.5 to 8.2 RA, where RA is the atmospheric 3He/4He ratio = 1.4 × 10? 6, indicating that helium is mostly of magmatic origin. Among the three pressure sources proposed to explain the crustal deformation, two inflation sources beneath the inland of northeast and the mid east coast of the Izu Peninsula locate in the broad distribution of high 3He/4He ratios, which supports relation of magma to the crustal uplift. In contrast, the distribution of 3He/4He ratios around the tensile fault assumed in the area of seismic swarms appears not to indicate existence of significant amount of magma below the tensile fault. Alternatively, the results suggest magma below a point several kilometers south of the tensile fault. The seismic swarms are explained either by fluid pressurization of thermal water heated by this magma or by intrusion of magma to the tensile fault moved obliquely from the deep magma reservoir.  相似文献   

5.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

6.
Refractory megacrysts of olivine, plagioclase, chromian diopside and Cr-Al spinel, which were not in equilibrium with the host oceanic tholeiite on eruption, are present in samples from several dredge sites and DSDP drill sites in the Atlantic and Pacific Oceans. They have multiple origins: (1) cognate or accidental mantle fragments; (2) relict fragments from fractional crystallization of parental liquids considerably more primitive than oceanic tholeiite; and most commonly (3) the fractional crystallization products of such liquids mixed with oceanic tholeiite magma. Melt inclusions in chrome-spinel phenocrysts provide evidence for this postulated Mg- and Ca-rich magma which has counterparts in the Scottish Tertiary Province and in west Greenland.  相似文献   

7.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

8.
A general model of magma intrusion into the crust is developed which is based on a viscous-dissipation, forced-convection flow process driven by gravitational-buoyancy forces. Although some of the points in this general model have been studied before, it is possible with the present model to go further and calculate magma volumetric intrusion rates from fundamental properties and parameters. Equations for forced convection in a conduit with viscous dissipation are combined with results for the temperature dependence of magma viscosity. The volumetric intrusion rate is shown to be not a function of viscosity as might be expected, but rather a function primarily of the rate of change of viscosity with temperature. The model predictions for intrusion rate correlate well with field results for several sites where data exist for both intrusion or extrusion rate and for the temperature-dependent behavior of magma viscosity. The model predicts magma chamber replenishment rates equivalent to thermal energy rates on the order 10 GW (gigawatts) for a single active magma site. Assuming active magma sites on a 50-km spacing along volcanic lineaments leads to an estimate of a renewable magma intrusion rate into the crust of the western U.S. on the order of 2 TW (terawatts).  相似文献   

9.
Mean crustal velocity is a critical parameter for genesis of continental crystalline crust because it is a function of mean crustal composition and therefore may be used to resolve continental crustal growth in space and time. Although the best values of mean crustal velocity are determined from wide-angle reflection measurements, most studied here necessarily come from vertical averages in crustal refraction determinations. The mode of 158 values of mean crustal velocity is 6.3 km/s, a velocity which corresponds to a mean crustal composition of granodiorite to felsic quartz diorite; Archean crust may be slightly more mafic. Mean crustal velocities range from 5.8 to 7.0 km/s. The lowest values invariably are found in thermally disturbed rift zones and the highest values correspond to velocities in gabbro. Velocities in island arcs may be as low as 6.0 km/s but are typically 6.5–6.9 km/s which corresponds to andesitic composition; estimates of island arc composition are andesitic. If values of mean crustal velocity are not biased, this observation suggests that continental crust did not grow simply by addition of island arc material. Possibilities are that crust formed from fusion of island arcs and was later changed to more felsic composition by addition of material from the mantle or that the late Archean episode of major crustal growth did not involve processes similar to younger island arcs. Some crustal blocks might be changed in composition and thickness by such processes as underplating, interthrusting, necking and sub-crustal erosion. Specially designed experiments are suggested to determine this parameter so critical for understanding genesis of continental crust.  相似文献   

10.
The extensive, complex, continental flood basalt (CFB) province which occurs in Ethiopia and Yemen consists of Oligocene prerift volcanism related to the Africa–Arabia continental break-up. Basalts from the northwestern Ethiopian Plateau exhibit a particularly large range of compositions and, for the first time in the Afro-Arabian CFB province, low-Ti basalts have been encountered. Major and some trace element data have been used to identify distinct geochemical groups and evaluate the role of differentiation processes. Three magma types have been distinguished: two high-Ti groups (HT1 and HT2) and one low-Ti group (LT). The transitional to tholeiitic LT suite exhibits low TiO2 (1–2.6%), Fe2O3* (10.5–14.8%), CaO/Al2O3 (0.4–0.75), Nb/La (0.55–0.85) and high SiO2 (47–51%). In contrast, the HT2 suite exhibits high TiO2 (2.6–5%), Fe2O3* (13.1–14.7%), CaO/Al2O3 (0.9–1.43), Nb/La (1.1–1.4) and low SiO2 (44–48.3%). The HT1 series is intermediate between the LT and HT2 groups. These three groups of lavas originated from different parental magmas. They display distinct differentiation trends, either controlled by the removal of a shallow level gabbroic (Pl+Ol+Cpx) assemblage (LT and HT1 suites) or by deeper Ol+Cpx fractionation (HT2 suite). Most of this thick continental flood lava pile was emplaced over a short time interval (about 1–2 Ma). The three contrasted magma types do not reflect a temporal evolution of their sources but rather a strong spatial control. Indeed, the northwestern Plateau may be subdivided into two different subprovinces as all the low-Ti basalts are located in the northern part of the plateau, and the high-Ti basalts are exposed in the eastern and southern parts. The LT and HT1 basalts display compositional ranges similar to those of the low- and high-Ti groups from other main CFB provinces (e.g. Parana, Deccan, Karoo, Siberia, …). However, the HT2 group exhibits extreme OIB-like compositions. This unusual geochemical signature suggests the involvement of deep mantle in the genesis of the HT2 magmas. The LT compositions rather reflect the participation of the continental lithosphere, through mantle derived melts and/or crustal contamination.  相似文献   

11.
The effects of temperature, fO2 and composition on the electrical conductivity of silicate liquids have been experimentally determined from 1200 to 1550°C under a range of fO2 conditions sufficient to change the oxidation state of Fe from predominantly Fe2+ to Fe3+. Oxidation of ferrous to ferric iron in the melt has no measurable effect on the conductivity of melts with relatively low ratios of divalent to univalent cations. Under strongly oxidizing conditions a minor decrease of conductivity is detected inth highΣM2/ΣM+ ratios. It is concluded that for purposes of estimating the conductivity of magmatic liquids, fO2 may be ignored to a first approximation. Both univalent and divalent cation transport is involved in electrical conduction. Melts relying heavily on divalent cations for conduction, i.e. melts with relatively large ΣM2+/ΣM+ ratios, show strong departures from Arrheenius temperature dependence with the apparent activation energies decreasing steadily as the temperature increases. Conductivities dominated by the univalent cations, in melts with relatively small ΣM2+/ΣM+ ratios, show classical Arrhenius temperature dependence. These observations are discussed in terms of the general characteristics of the melt structure.Compositional variations within the magmatic range account for much less than an order of magnitude variation in electrical conductivity at a fixed temperature. This observation, combined with previous measurements of the conductivity of olivine (A. Duba, H.C. Heard and R. Schock, 1974) make it possible to state with reasonable confidence that melts occurring within the mantle will be more conductive by 3–4 orders of magnitude than their refractory residues. Potential applications to geothermometry are discussed.  相似文献   

12.
The conditions under which two magmas can become mixed within a rising magma batch are investigated by scaling analyses and fluid-dynamical experiments. The results of scaling analyses show that the fluid behaviours in a squeezed conduit are determined mainly by the dimensionless number where 1 is the viscosity of the fluid, U is the velocity, g is the acceleration due to gravity, is the density difference between the two fluids, and R is the radius of the tube. The parameter I represents a balance between the viscous effects in the uppermost magma which prevent it from being moved off the conduit walls, and the buoyancy forces which tend to keep the interface horizontal. The experiments are carried out using fluid pairs of various density and viscosity contrasts in a squeezed vinyl tube. They show that overturning of the initial density stratification and mixing occur when I>order 10-1; the two fluids remain stratified when I 10-3. Transitional states are observed when 10-3<I<10-1. These results are nearly independent of Reynolds number and viscosity ratio in the range of and Re 1<300. Applying these results to magmas shows that silicic to intermediate magmas overlying mafic magma will be prone to mixing in a rising magma batch. This mechanism can explain some occurrences of small-volume mixed lava flows.  相似文献   

13.
The igneous rocks of the Pongola Supergroup (PS) and Usushwana Intrusive Suite (UIS) represent a case of late Archaean continental magmatism in the southeastern part of the Kaapvaal craton of South Africa and Swaziland.

U-Pb dating on zircons from felsic volcanic rocks of the PS yields a concordia intercept age of 2940 ± 22Ma that is consistent with a Sm-Nd whole rock age of 2934 ± 114Ma determined on the PS basalt-rhyolite suite. The initial εNd of−2.6 ± 0.9 is the lowest value so far reported for Archaean mantle-derived rocks. Rb-Sr whole rock dating of the PS yields a younger isochron age of 2883 ± 69Ma, which is not significantly different form the accepted U-Pb zircon age.

An internal (cpx-opx-plag-whole rock) isochron for a pyroxenite from the younger UIS yields an age of 2871 ± 30 Ma and initial 143Nd/144Nd that lies off the CHUR growth curve by εNd −2.9 ± 0.2. However, Sm-Nd whole-rock data for the UIS yield an excessively high age of 3.1 Ga that conflicts with firm geological evidence showing the UIS to be intrusive into the PS.

The negative deviations of initialεNd from the chondritic Nd evolution curve suggest significant contamination of the PS and UIS melts by older continental crust. A mixing process with continental crust after magma segregation is supported by a high initial 87Sr/86Sr ratio of0.703024 ± 24 for a clinopyroxene sample from a UIS pyroxenite, compared with an expected value of 0.701 for the 2.9 Ga mantle. We therefore interpret the linear array of data points for the UIS gabbros as a mixing line between 2.87 Ga old magma and older continental crust.

Parallel LREE-enriched REE patterns, negative Nb-Ti anomalies, a distinctive and uniform ratio of Ti/Zr 46 and a narrow span of initial Nd indicate a common source for both the PS and UIS suites which is different from primitive mantle.  相似文献   


14.
15.
A nonstationary model of spreading with periodic intrusions of a molten material into an axial zone of a mid-ocean ridge (MOR) is applied to numerical analysis of the thermal state in MOR axial zones and the formation of crustal and mantle magma chambers in them. The model satisfactorily explains the positions, dimensions, and shapes of magma chambers, as well as variations in these parameters depending on the spreading rate, temperature, and composition of crustal and mantle rocks. The release and absorption of the latent heat of rock melting, hydrothermal heating of the crust, and variations in the solidus and liquidus temperatures of crustal and mantle rocks as a function of their composition are factors controlling the shape and position of crustal magma chambers.  相似文献   

16.
Some laboratory experiments are described which investigate the dynamical effects of replenishment of a magma chamber containing high viscosity magma by hotter, denser and much more fluid magma. In the experiments a layer of hot KNO3 solution is emplaced beneath cold glycerine, which has a viscosity 3000 times greater. Less dense fluid is released immediately and continuously from the interface as a result of crystallization in the lower layer and rises as plumes through the overlying glycerine. Further crystallization occurs in the plumes, and the crystals fall out; but there is little mixing between the two fluids and a layer of depleted KNO3 solution forms at the top. The experiments demonstrate that interfacial processes begin to dominate where there are large viscosity differences between adjacent fluid layers as would be the case in a rhyolitic magma chamber replenished by basaltic magma.  相似文献   

17.
18.
We aim to constrain the lower mantle geotherm and average composition from 1D seismic models and experimental mineralogy data, explicitly accounting for possible sources of uncertainty. We employ an isentropic third-order Birch-Murnaghan equation of state, which is in excellent agreement with recent ab initio calculations of density and bulk modulus for Mg-perovskite. Furthermore, ab initio and experimental data are reasonably consistent with each other. Modelling the shear modulus is not as straightforward, but is needed because density and the bulk modulus alone do not sufficiently constrain temperature and composition. To correctly predict ab initio calculations for the shear modulus of Mg-perovskite, we needed to prescribe a cross-derivative at zero pressure, which we determined by trial and errors. Unless this ad hoc cross-derivative is confirmed by further experimental results, there seems to be an inconsistency between ab initio and experimental data. Purely experimental data most likely require a non-adiabatic temperature profile, but it is difficult to infer the number and location(s) of the non-adiabatic increase(s). If ab initio data are used, at least one thermal boundary layer seems reasonable, but its location depends on the modelling of the iron content. A strong chemical density contrast in the mid-mantle (≥2%) is not supported by ab initio data, but is possible with experimental data. Other major sources of uncertainty are the trade-off between thermal and compositional effects, the possible influence of aluminium perovskite, and poorly understood frequency effects.  相似文献   

19.
The diffusion of an ion in porewaters cannot occur independently of the other ions in solution as a result of Coulombic coupling, as well as from other effects not considered here. Unfortunately, a longstanding disagreement exists about the correct form and meaning of the equations that describe Coulombic coupling in porewaters, i.e., Ben-Yaakov [Am. J. Sci. 281 (1981) 974] vs. Lasaga [Am. J. Sci. 281 (1981) 981]. This paper re-examines this controversy by reformulating the problem starting from fundamental concepts of mass and charge conservation. We show that these antagonistic formulations are both valid and, in fact, equivalent, when the different interpretations of charge balance are resolved. Most of the disagreements between Ben-Yaakov and Lasaga are then shown to result from differing methods of solution, not fundamental disparities in their models. We note, however, that the explanation for the concept of “stationary” gradients of nonreacting ions as given Ben-Yaakov is inaccurate, and such gradients do lead to diffusive fluxes that are counterbalanced by electrochemical migrational fluxes to produce no net flux (excluding advective flux). We further find that the bicarbonate diffusive flux will not balance the diffusional charge flux of sulfate during its reduction if advection is present. This latter imbalance generates compensating fluxes in the other nonreacting ions. We have applied our theory to a simplified case of sulfate reduction in a marine sediment. The results show that nonreacting ions do diffuse and that with normally expected values of porewater advection, the ratio of the bicarbonate to the sulfate flux can be far different than the ideal value of −2.  相似文献   

20.
We present a visco-elastic bubble growth model, accounting for viscous and elastic deformations and for volatile mass transfer between bubbles and melt. We define the borders between previous bubble growth models accounting for incompressible viscous melt, and our new model accounting also for elastic deformation; this is done by a set of end-member analytical solutions and numerical simulations. Elastic deformation is most prominent for magma of small vesicularity, where the growth regime depends on the shear modulus. For high shear modulus, bubble growth is slow and follows an exponential law in a viscous growth regime, while for low shear modulus bubbles quickly follow a square-root diffusive solution. Our model provides all the elastic components (stresses, strains and strain rates) required for defining criteria for failure and magma fragmentation. We suggest two failure criteria, a stress related one based on the internal friction and the Mohr-Coulomb failure theory, and a strain related one based on fibre elongation experiments. We argue that both criteria are equivalent if we consider their shear modulus dependency and its effect on magma rheology. Last, we apply our model to the process of bubble nucleation. In the incompressible case, following nucleation, growth is slow and leads to long incubation times during which bubbles may be dissolved back into the melt. The elastic response in magmas with low shear modulus results in a short incubation time, increasing the probability of survival. The above effects emphasize the significance of visco-elasticity for the dynamic processes occurring in magmas during volcanic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号