首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Polymict samples can be used to establish mass-balance constraints regarding the bulk composition of the lunar crust, and to gauge the degree of regional heterogeneity in the composition of the lunar crust. The most ideally polymict type of sample is finely-mixed regolith (lunar soil), or its lithified equivalent, regolith breccia. Fortunately, lunar regolith breccias can occasionally be found at great distances from their points of origin — most of the known lunar meteorites are regolith breccias. We are searching for examples of exotic regolith samples among the Apollo regolith breccia collection. Most of the 21 Apollo regolith breccias analyzed for this study strongly resemble the local soils over which they were collected. Nine regolith breccias from Apollo 16 are surprisingly mature compared to previously-analyzed Apollo 16 regolith breccias, and six of the seven from Apollo 16 Station 5 have lower, more local-soil-like,mg ratios than previously analyzed regolith breccias from this station. Several of the Apollo 14 regolith breccias investigated show significantly highermg, and lower Al, than the local soils.The most interesting sample we have investigated is 14076,1, from a lithology that constitutes roughly half of a 2.0-g pebble. The presence of spherules indicates a regolith derivation for 14076,1, yet its highly aluminous (30 wt.% Al2O3) composition is clearly exotic to the 1.6-km traverse surface over which the Apollo 14 samples were collected. This sample resembles soils from the Descartes (Apollo 16) highlands far more than it does any other polymict sample from the Fra Mauro (Apollo 14) region. The I/sFeO maturity index is extremely low, but this may be a result of thermal annealing. A variety of siderophile elements occur in 14076,1 at typical regolith concentrations. The chemistry of the second most aluminous regolith sample from Apollo 14, 14315, can only be roughly approximated as a mixture of local regolith and 14076,1-like material. However, the low a priori statistical probability for long-distance horizontal transport by impact cratering, along with the relatively high contents of incompatible elements in 14076,1 (despite its high Al content), suggest that this regolith breccia probably originated within a few hundred kilometers of the Appollo 14 site. If so, its compositional resemblance to ferroan anorthosite tends to suggest that the regional crust is, or originally was, far richer in ferroan anorthosite than implied by the meager statistics for pristine rocks from this site. Thus, 14076,1 tends to strengthen the hypothesis that ferroan anorthosite originated as the flotation crust of a global magmasphere.  相似文献   

2.
The Apollo 11 soil breccias are samplers of the ancient lunar environment due to their history in the regolith and their efficient closure to addition of recent solar wind upon compaction. These breccias contain the lowest15N/14N isotopic ratio yet reported for any lunar sample (in fact, for any natural sample). This extends the range of variation of15N/14N of the solar wind to greater than 30%, from a δ15N of ?190‰ in the past to +120‰ at present. No mechanism is yet known that is capable of accounting for such a large change in the15N/14N ratio without producing a substantial concomitant change in the13C/12C ratio, although some sort of nuclear reaction in the sun appears to be required. Apollo 11 soil breccias and 15086 are all formed by meteoritic impacts which compact the lower regolith against the basement rock without much heating. Rock 15086 formed from the layer of regolith between 100 and 200 cm depth, as shown by the close agreement between the nitrogen content and isotopic ratios of 15086 and those of the Apollo 15 deep drill core. Cosmic ray exposure ages, based on spallation-produced15N, are 2.3 ± 0.4 b.y. for Apollo 11 breccias. This age is much greater than the estimate from cosmogenic21Ne, presumably due to diffusive loss of neon.  相似文献   

3.
An airborne magnetic survey of an area of 580 km2 centred on Gosses Bluff was flown in 1968. This survey formed part of a joint project by the Australian Bureau of Mineral Resources and the United States Geological Survey to evaluate the hypothesis that Gosses Bluff is of impact origin. Analyses of the magnetic data show that shallow sources of magnetic disturbance flank the Bluff on its southern side. Interpretation of the magnetic anomalies indicates their source to be shock-melted breccias of possible Jurassic age.  相似文献   

4.
A total of 139 breccia and crystalline rock fragments in the size range 2–4 mm from four Apollo 15 soil samples have been examined. Two of the sample stations are on the mare surface (4 and 9A) and two are on the Apennine Front (2 and 6). Approximately 90% of the fragments from the Apennine Front are brown-glass “soil” breccias, but those from the mare surface are 60%–70% basalt. Several textural varieties of mare basalt have been recognized, but within experimental error there is no difference in their40Ar-39Ar ages. The major non-mare (Pre-Imbrian) crystalline rock types in the Apennine Front regolith are KREEP basalt, anorthositic rocks, recrystallized norite (including anorthositic norite) and recrystallized polymict breccias; however, such crystalline rocks are rare in the samples examined. Apparently, the near surface Imbrium ejecta below the regolith has not been thermally recrystallized, and probably there are no outcrops of crystalline rocks upslope from the sample stations.  相似文献   

5.
One of the essential controls on the microwave thermal emissions (MTE) of the lunar regolith is the abundance of FeO and TiO2, known as the (FeO+TiO2) abundance (FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature (TB) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder (CELMS) data from the Chang’E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that: (1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and (2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.  相似文献   

6.
207Pb/206Pb of “low temperature sited” (LTS) lead as reported by Silver (1975) increases with40Ar/36Ar of trapped argon in thirteen samples from lunar maria. This strongly supports an earlier conclusion by (1972) that large (40Ar/36Ar)T ratios represent ancient regolith records, and provides a rough (40Ar/36Ar)T timescale.The erasure of (40Ar/36Ar)T records in surface soils by the excavation of deep-seated, “fresh” bedrock and by erosion of particle surfaces via ion sputtering must have been counteracted by conserving processes in the regolith. Two such processes are relatively well understood: agglutinate formation and the excavation and comminution of soil breccias which have preserved an ancient (40Ar/36Ar)T record. The frequency distribution of (40Ar/36Ar)T in 82 “soils” from all Apollo missions suggests a third process, which requires that sizeable “pockets” of ancient regolith materials including soils have survived deep turnover for billions of years.Large-scale mobility of LTS lead throughout all of the regolith does not appear to occur.Inert gas ions with sufficient energy for trapping may have reached the lunar surface more than 3 b.y. ago.The Apollo 11 microbreccias appear to have been formed more than 3 b.y. ago from regoliththen extant on the surface.  相似文献   

7.
Glacial float from Lake Wanapitei, Ontario (latitude 46° 44.7′N, longitude 80° 44.6′W), which has an approximately circular central basin 8.6 km in diameter, includes breccias and glassy rocks containing abundant evidence of shock metamorphism. One glass-rich boulder, a strongly shocked feldspathic quartzite, contains coesite in clasts of diaplectic silica glass (refractive index 1.4605±0.0005) held in a matrix of mixed vesicular glasses including alkali feldspar glass. This association is indicative of shock pressure of 425–500 kbar, and is additional strong evidence supporting a hypervelocity impact origin for the basin.  相似文献   

8.
The BK9 kimberlite consists of three overlapping pipes. It contains two dark varieties of massive volcaniclastic kimberlite, informally termed dark volcaniclastic kimberlite (DVK). DVK(ns) is present in the north and south pipes and is interbedded with lenses of basalt breccia at the margins of the pipes. DVK(c) is present within the central pipe where it is overlain by a sequence of basalt breccias with interbedded volcanogenic sediments. The features observed within the DVK units of the BK9 kimberlite provide strong evidence for gas fluidisation of the accumulating pyroclastic material. These include the massive interior of the pipes, marginal epiclastic units, well-dispersed country-rock xenoliths and small-scale heterogeneities in lithic clast abundance. The upper portions of the central pipe provide a record of the transition from pyroclastic eruption and infill to passive epiclastic infilling of the crater, after the eruption has ceased. The wall-rock of the BK9 kimberlite dips inwards and is interpreted as post pipe-fill subsidence of the adjacent country rock. The two DVK units contain interstitial, silt-sized pyroclasts. The DVK(ns) has a higher fraction of former melt and displays evidence of incipient welding, as a result of differences in eruption dynamics. These units demonstrate that whilst DVK is comparable in many respects to MVK and forms part of a spectrum of volcaniclastic rocks formed by fluidisation, it differs in frequently containing silt-sized particles and including agglutinated and welded varieties with a high melt fraction. The DVK varieties, studied here, also have a distinctive hydrothermal assemblage, resulting from the abundance of low-silica accidental lithic clasts. Both the hydrothermal alteration and the abundance of silt-sized particles contribute to the DVKs distinctive dark colour.  相似文献   

9.
Single-crystal (U-Th)/He dating of 32 apatite and zircon crystals from an impact breccia yielded a weighted mean age of 663 ± 28 ka (n = 3; 4.2 % 2σ uncertainties) for the Monturaqui impact structure, Chile. This ~350 m diameter simple crater preserves a small volume of impactite consisting of polymict breccias that are dominated by reworked target rock clasts. The small size, young age and limited availability of melt material for traditional geochronological techniques made Monturaqui a good test to define the lower limits of the (U-Th)/He system to successfully date impact events. Numerical modeling of 4He loss in apatite and zircon crystals shows that, for even small craters such as Monturaqui, the short-lived compressional stage and shock metamorphic stage can account for the observed partial to full resetting of (U-Th)/He ages in accessory minerals. Despite the distinctly different 4He diffusion parameters of apatite and zircon, the 2σ-overlapping youngest ages are recorded in both populations of minerals, which supports the inference that the weighted mean of the youngest (U-Th)/He population is the age of formation of this impact structure.  相似文献   

10.
The major element compositions of 93 low specific gravity (<2.60), high-silica (>60%) glass particles, from a sample of lunar fines (14259,20) were determined by electron microprobe analyses. The size, shape, abundance, mineralogy and major element composition of most (>60%) of the high-silica glasses is consistent with their being fragments of interstitial glass from mare basalts. However, one group of 30 glasses with between 72% and 78% SiO2 and an average of ~2.6% FeO can be distinguished from other high-silica glasses both chemically and petrographically. Glass particles with this composition do not contain crystalline inclusions and are fairly homogeneous not only within a single particle, but also from particle to particle. The chemistry and petrology of these glasses suggest that they are not fragments of interstitial glass or shock-melted particles from a “granitic” source rock. Rather, the homogeneity and lack of crystalline inclusions suggest that this group of high-silica glasses was the product of lunar acidic volcanism.  相似文献   

11.
How rock is weathered physically and chemically into transportable material is a fundamental question in critical‐zone science. In addition, the distribution of weathered material (soil and intact regolith) across upland landscapes exerts a first‐order control on the hydrology of watersheds. In this paper we present the results of six shallow seismic‐refraction surveys in the Redondo Mountain region of the Valles Caldera, New Mexico. The P‐wave velocities corresponding to soil (≤ 0.6 km s?1) were inferred from a seventh seismic survey where soil‐thickness data were determined by pit excavation. Using multivariable regression, we quantified the relationships among slope gradient, aspect, and topographic wetness index (TWI) on soil and regolith (soil plus intact regolith) thicknesses. Our results show that both soil and regolith thicknesses vary inversely with TWI in all six survey areas while varying directly with slope aspect (i.e. thicker beneath north‐facing slopes) and inversely with slope gradient (i.e. thinner beneath steep slopes) in the majority of the survey areas. An empirical model based on power‐law relationships between regolith thickness and its correlative variables can fit our inferred thicknesses with R2 ‐values up to 0.880 for soil and 0.831 for regolith in areas with significant topographic variations. These results further demonstrate the efficacy of shallow seismic refraction for mapping and determining how soil and regolith variations correlate with topography across upland landscapes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A unique terrestrial large impact melt sheet is preserved in the 1850 Ma Sudbury Structure, Ontario. We have undertaken a Pb isotope investigation of the southern limb of the melt sheet, termed the South Range Main Mass. The model initial Pb isotope ratios (207Pb/204Pbm) vary stratigraphically through the predominantly quartz monzogabbroic Lower Unit, varying from 15.40 to 15.45 at the base to ca. 15.35 at the top of the sequence. Lateral variations of similar range occur in basal Lower Unit samples over scales of less than 5 km. The range of these variations is similar to those of locally exposed upper crustal target rocks, and it is evident that the melt sheet has efficiently preserved inherited variability. During the violent phases of crater formation superheated impact melts are expected to be well-mixed mechanically, therefore significant post-impact melting of target rocks, fallback material and entrained clasts is required to explain such heterogeneity.The Sudbury Structure hosts world class Ni-Cu-PGE sulphide ore deposits. Systematic variation in 207Pb/204Pbm occurs throughout sulphide ores within the Creighton Embayment, from massive (15.42–15.45) to interstitial (ca. 15.40–15.41) and disseminated (ca. 15.39) sulphide. Linking the Pb isotope composition of these ores to the immediately overlying Lower Unit stratigraphy, a protracted sulphide segregation history is apparent. Massive sulphides segregated early, prior to or during initial silicate crystallisation, although the total time involved in sulphide accumulation spanned much of the crystallisation of the Lower Unit. It is also shown that lateral variations in Ni depletion throughout the Main Mass correlate with Pb isotopes. Those segments with the strongest chalcophile element depletion signatures, reflecting the accumulation of significant basal sulphides, have high initial Pb isotope values, consistent with early sulphide segregation. The characterisation of Pb isotopic heterogeneity has therefore provided insights into the evolution and scales of mixing of the melt sheet, with the identified chemical variability between melt cells having a significant influence on ore forming processes.  相似文献   

13.
Microprobe analyses of 33 melt pocket glasses in five L6d and L6e chondrites show them to be chemically varied but typically enriched in the constituents of plagioclase relative to the host meteorites. This enrichment appears to increase with the degree of melting (0–6.5 vol.%), but other chemical variations among the glasses (sodium depletion, reduction of ferrous iron) appear to be unrelated to shock intensity and melt abundance.Chemical trends for melt pocket glasses differ sharply from those reported for chondrules in ordinary chondrites. Thus partial shock melting of chondritic material is an inadequate explanation for the chemical properties of chondrules.  相似文献   

14.
We have discovered four clasts in three ordinary-chondrite regolith breccias which are a new kind of type 3 chondrite. Like ordinary and carbonaceous type 3 chondrites, they have distinct chondrules, some of which contain glass, highly heterogeneous olivines and pyroxenes, and predominantly monoclinic low-Ca pyroxenes. But instead of the usual fine-grained, Fe-rich silicate matrix, the clasts have a matrix composed largely of aggregates of micron- and submicron-sized graphite and magnetite. The bulk compositions of the clasts as well as the types of chondrules (largely porphyritic) are typical of type 3 ordinary chondrites, although chondrules in the clasts are somewhat smaller (0.1–0.5 mm). A close relationship with ordinary chondrites is also indicated by the presence of similar graphite-magnetite aggregates in seven type 3 ordinary chondrites. This new kind of chondrite is probably the source of the abundant graphite-magnetite inclusions in ordinary-chondrite regolith breccias, and may be more common than indicated by the absence of whole meteorites made of chondrules and graphite-magnetite.  相似文献   

15.
The inert gases were measured mass-spectrometrically in 12 fragments and 1 “dust” sample from Luna 16. The fragments were classified petrologically by microscopic inspection. The major petrologic types were breccias and basalts. The former were much richer in trapped gases than the latter, and were apparently formed by the welding of local fines. However, there was no clear-cut difference in gas content of either breccias or basalts between zone A (top) and zone G (bottom). The4He/20Ne ratio of the breccias (average 49) was systematically smaller than that of the basalts (average 78), probably because of He-Ne fractionation during or after the formation of the breccias. We suggest that the4He/20Ne ratios of bulk fines in general may reflect the proportions of basaltic and breccia (plus cindery glasses) fragments in the fines. Substantial variations of4He/3He were found, which could not be explained with the presence of variable proportions of cosmogenic3Hec. Either the solar-wind value has changed in time, or the fragments with the small ratios were exposed to solar flares rich in3He and/or4He. Exposure ages of four fragments are several hundred million years. The40Ar/36Ar slopes of breccias and basalts are identical: 0.65.  相似文献   

16.
Complex rocks, consisting of different lithologic breccias and sediments in the Tungho area of the southern Coastal Range, eastern Taiwan, were formed by magmas and magma–sediment mingling. Based on field occurrences, petrography, and mineral and rock compositions, three components including mafic magma, felsic magma, and sediments can be identified. The black breccias and white breccias were consolidated from mafic and felsic magma, respectively. Isotopic composition shows these two magmas may be from the same source. Compared to the white breccias, the black breccias show clast-supported structures, higher An values in plagioclase, higher contents of MgO, CaO, and Fe2O3 and lower SiO2, greater enrichment in the light rare earth elements (LREE), and depletion in the heavy rare earth elements (HREE). The white breccias show matrix-supported blocks and mingling with tuffaceous sediments to form peperite. Physical and chemical evidence shows that the characteristics of these two components (mafic and felsic magmas) are still apparent in the mingled zone. According to their petrography, mafic and felsic magmas did not have much time for mingling. White intrusive structures and black flow structures show that mingling occurred before they solidified. Finally, the occurrence of mingling between magmas and sediments suggests that the mingling has taken place at the surface and not in the magma chamber.  相似文献   

17.
Thirty-three of 52 type L4 to L6 chondrites that we have examined in thin section contain closed bodies of crystal-laden glass or devitrified glass (melt pockets) that testify to in-situ melting. A close correlation between the distribution of melt pockets and shock intensity as inferred from the characteristics of olivine and plagioclase indicates that the pockets reflect shock melting. The appearance of pockets coincides with a sharp decrease of40Ar in L-group chondrites, suggesting that shock melting was responsible for loss of argon and raising the possibility that this process redistributed other volatile elements as well. The use of three criteria for shock intensity — olivine and plagioclase characteristics, and the presence or absence of melt pockets — leads to a refined shock classification for equilibrated chondrites that is based entirely on petrographic observations.  相似文献   

18.
The association between agglutinates and chondrule-like spherules, which characterizes the assemblage of impact-derived melt products in lunar regolith samples and some gas-rich achondrites, is not found in primitive chondrites. This observation suggests that impacts into a parent-body regolith are unlikely to have produced the chondrules. We believe that if chondrules were formed from impact melt, it was probably generated by jetting during particle-to-particle collisions, presumably in the nebula.  相似文献   

19.
Abundances and isotopic compositions of all the stable noble gases have been measured in 19 different depths of the Apollo 15 deep drill core, 7 different depths of the Apollo 16 deep drill core, and in several surface fines and breccias. All samples analyzed from both drill cores contain large concentrations of solar wind implanted gases, which demonstrates that even the deepest layers of both cores have experienced a lunar surface history. For the Apollo 15 core samples, trapped4He concentrations are constant to within a factor of two; elemental ratios show even greater similarities with mean values of4He/22Ne= 683±44,22Ne/36Ar= 0.439±0.057,36Ar/84Kr= 1.60±0.11·103, and84Kr/132Xe= 5.92±0.74. Apollo 16 core samples show distinctly lower4He contents,4He/22Ne(567±74), and22Ne/36Ar(0.229±0.024), but their heavy-element ratios are essentially identical to Apollo 15 core samples. Apollo 16 surface fines also show lower values of4He/22Ne and22Ne/36Ar. This phenomenon is attributed to greater fractionation during gas loss because of the higher plagioclase contents of Apollo 16 fines. Of these four elemental ratios as measured in both cores, only the22Ne/36Ar for the Apollo 15 core shows an apparent depth dependance. No unambiguous evidence was seen in these core materials of appreciable variations in the composition of the solar wind. Calculated concentrations of cosmic ray-produced21Ne,80Kr, and126Xe for the Apollo 15 core showed nearly flat (within a factor of two) depth profiles, but with smaller random concentration variations over depths of a few cm. These data are not consistent with a short-term core accretion model from non-irradiated regolith. The Apollo 15 core data are consistent with a combined accretion plus static time of a few hundred million years, and also indicate variable pre-accretion irradiation of core material. The lack of large variations in solar wind gas contents across core layers is also consistent with appreciable pre-accretion irradiation. Depth profiles of cosmogenic gases in the Apollo 16 core show considerably larger concentrations of cosmogenic gases below ~65 cm depth than above. This pattern may be interpreted either as an accretionary process, or by a more recent deposition of regolith to the upper ~70 cm of the core. Cosmogenic gas concentrations of several Apollo 16 fines and breccias are consistent with ages of North Ray Crater and South Ray Crater of ~50·106 and ~2·106 yr, respectively.  相似文献   

20.
The eroded Colle Fabbri volcano comprises intrusive and extrusive rocks which cover an area of about 10,000 m2 in the Umbria region, Central Italy. The outcrop is located at the SW boundary of the Umbria Valley Graben (Umbria Region) on an N140 normal fault inside the Intramountain Ultra-Alkaline Province of carbonatite and melilitite rocks of central–southern Italy. A field survey of the outcrop allowed a reconstruction of igneous activity events of this unusual small-scale volcano. It is younger than 0.7 m.y. and rests on Lower Pleistocene conglomerates with intercalated clay beds. A palaeosoil marks the base of the volcanic sequence. It follows several metres of extrusive breccias composed of fragments of thermometamorphosed clay and travertine. Key features of these breccias are mud shells on blocks, plastic mud lumps, slumps, and mechanical injection from one layer into another, as well as plastic and vesiculated, micro-brecciated matrix. The breccias are cemented by a variety of silicate, sulphate, and sulphate–carbonate minerals deposited by intense hydrothermal circulation. The breccias are related to phreatic explosions triggered by the eruption of a superficial hydrothermal system. Up to 1 m thick sill and a dykelet swarm intrude the breccias. In the southern part of the outcrop there is a plug of melilitolitic composition which intrudes the breccias and deforms them upward. A variety of contact breccias is also scattered around the sill and the plug. In some places, hyaloclastite formed when melt invaded water pockets contained in the encasing rocks under hydrostatic pressure conditions. A thermal aureole, which moves up to 10 m away from the contact, is characterised by cordierite–trydimite association, thus indicating high-temperature (>>1000 °C) contact phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号