首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work presents the detailed characterization of sea breeze (SB) over the Rayong coastal area, one of the most rapidly developed and highly industrialized areas during the last decade in Thailand, using observation data analysis and fine-resolution (2?km) mesoscale meteorological modeling with incorporation of new land cover and satellite-derived vegetation fraction data sets. The key characteristics considered include frequency of SB occurrence, sea-breeze day (SBD) identification, degree of inland penetration, and boundary layer development. It was found that SBs occur frequently in the winter due mainly to relatively large land–sea temperature contrasts and minimally in the wet season. Monthly mean SB onset and cessation times are at around 12–15 local time (LT) and 18–21 LT, respectively, and its strength peaks during the early- to mid-afternoon. Monthly SB hodographs generally exhibit clockwise rotations, and SB inland penetration (at PCD-T tower) ranges widely with the monthly means of 25–55?km from the coast. Mesoscale MM5 modeling was performed on two selected SBDs (13 January and 16 March 2006), on which the SBs are under weak and onshore strong influences from background winds, respectively. Simulated near-surface winds and temperature were found to be in fair-to-acceptable agreement with the observations. The SB circulation along the Rayong coast is clearly defined with a return flow aloft and a front on 13 January, while it is enhanced by the onshore background winds on 16 March. Another SB along the Chonburi coast also develops separately, but their fronts merge into one in the mid-afternoon, resulting in large area coverage by the SB. Simulated planetary boundary layer height over the land area is significantly affected by a thermal internal boundary layer (TIBL) induced by an SB, which is found to be low near the coast and increases toward the front (up to 800–1,000?m along the Rayong coast).  相似文献   

2.
3.
A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   

4.
Summary A three-dimensional non-hydrostatic atmospheric model RAMS, version3b, is used to examine the impact of complex topography on the sea breeze under heterogeneous and degradation land use characteristics. In the study, it is shown that topography plays an important role in the sea-breeze circulation by aligning the sea breeze front to the coastline and locating the convergence zones close to the mountain range. When the sea breeze is coupled with the upslope wind, the sea-breeze circulation is strengthened by the topography.Sensitivity analyses are carried out to determine the influence of vegetation and soil moisture, i.e., land surface modifications, to this thermally driven flow. Land degradation results in an enhanced sea-breeze circulation which is characterized by a stronger onshore flow, a stronger return current, a larger updraft velocity associated with the sea-breeze front and further inland penetration. Other important features are a deeper sea-breeze depth, a larger downdraft velocity behind the sea-breeze front, and a longer offshore extent. The results also show how land changes modify the sea breeze temporal evolution resulting in an earlier onset and later end. The study stresses the convenience of using three-dimensional models with detailed land surface information to model the sea breeze in complex terrain where land use is rapidly modified.Received February 25, 2002; accepted October 7, 2002 Published online April 10, 2003  相似文献   

5.
The development of the sea breeze in the Crimea during the day is studied on the basis of the mesoscale atmospheric circulation modeling. It is revealed that the formation of gravity currents directed from the banks to the center of the peninsula is observed for the cases of the weak atmospheric circulation. The results of the simulation for August 4, 2007 illustrating this phenomenon are presented. The wind speeds and velocities of the breeze front propagation are determined.  相似文献   

6.
利用WRF-Noah耦合中尺度模式对海南岛2012年7月5日的多云海风个例进行三维高分辨率数值模拟,重点分析多云天气条件下复杂地形区域的海风环流结构及其演变特征。通过观测资料与模拟结果的对比发现,WRF模式能够合理地模拟出岛屿四周的海风演变特征。与少云海风日相似,多云海风日中全岛海风于12时开始形成,15时海风发展最为强盛,影响范围最广,18时全岛海风的辐合程度最强,海风辐合区是主要的潜在降水区域。对比山区与平坦地区的海风环流发现,山区海风环流强盛期为13—18时,而平坦地区海风环流强盛期为15—18时。复杂的山地对海风环流结构有直接和间接的影响:一方面在山地地形动力阻挡和抬升作用下,海风环流变得更加清晰完整,间接延长了海风环流的维持时间;另一方面局地地形热力作用形成的谷风环流与海风几乎同时产生和消亡,两者汇合后,谷风的瞬间加强会引起海风锋锋消,瞬间减弱会引起海风锋锋生;两者同相叠加会使得海风环流结构更加完整。相比之下,平坦地区的海风受到的地形动力和热力作用小,海风水平分布比较规则,海风环流垂直结构的变化主要取决于不同方向海风之间的相互作用。  相似文献   

7.
山东半岛海风锋在一次飑线系统演变过程中的作用   总被引:1,自引:0,他引:1  
2016年6月30日生成于华北南部的一次长生命期的强飑线过程,造成了山东地区大范围风雹天气。文中利用常规观测资料、区域自动气象站观测数据及雷达监测产品,分析了山东半岛复杂的海风锋特征在这次飑线系统的断裂、再组织化以及极端大风、冰雹灾害形成过程中的重要作用。结果表明:(1)初始对流是在地面冷锋辐合线上触发的弱对流,在对流系统向更不稳定区域移动时与水平对流卷相交,对流迅速发展,并组织成东西走向的直线型飑线。(2)飑线系统在平原地区继续向前移动的过程中发生断裂,这一过程与渤海湾在黄河三角洲形成的两条移动方向不同的海风锋以及飑线系统的阵风锋有关:向内陆推进的两条海风锋与阵风锋在飑线系统中段的前部相交,诱发新生单体,造成该处对流系统更快地向前传播,最终导致飑线系统断裂;与此同时,断裂后的西段风暴因低层暖湿入流被切断而逐渐减弱。(3)断裂后西段残留风暴系统出流阵风产生的新生风暴向东北方向发展,与断裂后的东段风暴的后向传播(向西南方向发展)机制相互作用,完成了飑线的再次组织化,形成了具有典型弓状特征、水平尺度更大、近似于东北—西南走向的飑线系统。(4)长生命期飑线系统造成的极端雷暴大风和最大冰雹出现在飑线再组织化初期,位于飑线系统“弓部”位置,地面极端雷暴大风是冷池密度流、后侧入流急流和水成物对应的前侧下沉气流共同作用的结果,其中与后侧入流急流几乎完全分离的、与水成物对应的前侧下沉气流在这次极端地面大风发生时可能起到了重要作用。(5)山东半岛东侧的黄海海风锋向内陆推进(东南向西北)过程中与自西北向东南移动的飑线相遇,加强了风暴前侧的抬升、水汽供给和组织化程度,为飑线的长时间维持提供了有利条件。   相似文献   

8.
The goal of this study is to develop a high-resolution atmospheric hindcast over the Mediterranean area using the WRF-ARW model, focusing on offshore surface wind fields. In order to choose the most adequate model configuration, the study provides details on the calibration of the experimental saet-up through a sensitivity test considering the October–December 2001 period (the 2001 super-storm event in the West Mediterranean). A daily forecast outperforms the spectral technique of previous products and the boundary data from ERA-Interim reanalysis produces the most accurate estimates in terms of wind variability and hour-to-hour correspondence. According to the sensitivity test, two data sets of wind hindcast are produced: the SeaWind I (30-km horizontal resolution for a period of 60 years) and the SeaWind II (15-km horizontal resolution for 20 years). The validation of the resulting surface winds is undertaken considering two offshore observational datasets. On the one hand, hourly surface buoy stations are used to validate wind time series at specific locations; on the other hand, wind altimeter satellite observations are considered for spatial validation in the whole Mediterranean Sea. The results obtained from this validation process show a very good agreement with observations for the southern Europe region. Finally, SeaWind I and II are used to characterize offshore wind fields in the Mediterranean Sea. The statistical structure of sea surface wind is analyzed and the agreement with Weibull probability distribution is discussed. In addition, wind persistence and extreme wind speed (50 year return period) are characterized and relevant areas of wind power generation are described by estimating wind energy quantities.  相似文献   

9.
A wind-tunnel simulation of the diffusion patterns in a sea breeze has been attempted. No attempt was made to reproduce the recirculation that characterizes a sea breeze, but the results indicate that the low-level onshore flow was well simulated for neutral, stable, unstable, and elevated inversion conditions. Velocity, turbulence, shear stress, and temperature data were taken, and the spread of emissions from ground-level sources was investigated.Comparison is made with theoretical predictions by Inoue and with the open, countryside results of Pasquill. Agreement with the predictions by Inoue is good. The comparison with Pasquill's results shows that the wind-tunnel flows are shifted two categories towards more stable. The discrepancy may be explained as a lack of mesoscale turbulence in the wind-tunnel.  相似文献   

10.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

11.
The characteristics of the sea breeze in the Attica region of Greece, in which Athens is located, have been studied for occasions of weak synoptic-scale pressure gradient. The analysis is based on synoptic observations from six meteorological stations, three on the coast and three inland. The three inland stations and one of the coastal stations lie almost in a straight line at different distances from the coast. For each meteorological station, the basic characteristics of the sea breeze were determined, i.e.,
  1. The mean number of sea-breeze days for each calendar month.
  2. The monthly mean wind speed for each synoptic hour.
  3. The times of onset and cessation of the sea breeze.
  4. The monthly vector mean wind, and its constancy ‘Constancy’ is defined as 100{itV{inr}/V{ins}}, where {itV{inr}} is the magnitude of the vector mean wind, and {itV{ins}} is the scalar mean wind speed. See Brooks and Carruthers (1953). (In this paper, the factor 100 is not used.) for each synoptic hour.
  5. For days on which there was a sea breeze at Helliniko (the coastal reference station), the percentage number of days on which there was also a sea breeze at the given station.
An attempt was also made to determine further characteristics, such as the inland penetration of the sea breeze, its depth, the spatial and temporal variation of wind speed and direction, and the existence of the return flow. Finally, the properties of the land breeze are briefly outlined.  相似文献   

12.
In the period June–July 1992, four Doppler sodars were operated simultaneously in Rome and the surrounding area. The data have been used to investigate the contributions from sea breeze events to the local low-level circulation. Three days in which synoptic-scale pressure gradients were weak have been selected. A number of characteristics of the sea breeze are examined including the onset and cessation of the phenomenon, the behavior of the wind speed, and the depth of the density flow. The time propagation of the events and the influence of orography are obtained from a comparison between the data at different sites. The low-level circulation in the early morning is associated with the land breeze and appears to be enhanced by a mountain wind from the surrounding hills. The observed behavior of the vertical velocity field associated with the sea breeze is consistent with model predictions.  相似文献   

13.
渤海湾西岸海陆风特征对城市热岛响应的观测分析   总被引:1,自引:2,他引:1  
利用2008年全年渤海湾西岸(天津)14个自动气象站逐小时资料和6 h一次的地面常规资料,采用统计分析的方法,研究了天津城市热岛效应对渤海湾西岸海陆风的影响.结果表明:在冷岛和强热岛条件下,渤海湾西岸海风的发生频率较低,强热岛阻碍了海风向内陆的传播;内陆站在弱热岛条件下出现最大海风的频次较高,但其海风强度与无热岛或冷岛状况下相比要小一些;城市热岛效应的出现,推迟了城市周围郊区站海风的开始时间,缩短了海风的持续时间;城市站的海风风速与热岛强度呈负相关关系,但热岛效应对陆风风速的影响较强,陆风风速在热岛强度小于2.6℃时,随着其值的增大而减小,反之则增加;当海风向内陆延伸时,热岛强度会在午后海风盛行时段内增强,并与传播到此处的海风环流叠加,导致近地层海风风速增强,并可西伸至城市中心.  相似文献   

14.
渤海湾西部沿岸地区气温特征的观测研究   总被引:1,自引:2,他引:1  
在渤海湾西岸沿着垂直于海岸的方向从海边向内陆设置了4个自动气象观测站,以10 min为时间间隔观测地面1.5 m处气温.结合邻近气象台站的温度观测,分析渤海湾沿岸气温的时空变化特征.结果表明:秋、冬季气温升降迅速,夏季气温升降缓慢;冬季和夏季气温日较差小,秋季气温日较差大;日平均气温与日最低气温从海边向内陆逐渐降低,日最高气温和气温日较差从海边向内陆逐渐升高;夏季海陆风日的气温时空变化显著,海边地区的气温日变幅小,内陆地区的气温日变幅大,海陆温差随着离岸距离的增加而加大;秋、冬季海陆风日的海边和内陆之间的气温日变幅小,海边和内陆之间的海陆温差变幅基本相当;海陆风环流影响海岸地区气温的时间范围主要是海陆风日,空间范围从海边伸向内陆10 km左右,最大范围从海边伸向内陆50~60 km左右.  相似文献   

15.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

16.
对2007年8月13日天津多普勒天气雷达(CIN RAD WSR/98D)探测的雷暴天气个例进行分析,结果表明:此次雷暴天气是由渤海湾海风锋与阵风锋碰撞形成的;碰撞后,在海风锋前端、阵风锋前部有新的雷暴单体形成;阵风锋后部的对流回波主体加强,对流回波主体由椭圆状加强为典型的弓状。应用天津36个自动气象站的地面六要素资料和北京850 hPa以上探空资料,组成新的诊断资料,对该个例进行诊断分析,结果表明:雷达探测的海风锋前端具有较强的低层垂直风切变梯度和露点温度梯度大值区,海风锋前沿与0~3 km垂直风切变梯度密集区相对应,且与露点温度梯度变化较快的区域基本吻合;海风锋与阵风锋相互碰撞时,0~3 km垂直风切变在2 h内变化较快,且有明显的增加趋势,CAPE(convective available potential energy,对流有效位能)值在雷暴形成前有较明显增加;随着雷暴天气结束,上述特征随之消失。  相似文献   

17.
In-situ sodar and lidar measurements were coupled with numerical simulations for studying a sea-breeze event in a flat coastal area of the North Sea. The study’s aims included the recognition of the dynamics of a sea-breeze structure, and its effects on the lower troposphere stratification and the three-dimensional (3D) pollutant distribution. A sea breeze was observed with ground-based remote sensing instruments and analysed by means of numerical simulations using the 3D non-hydrostatic atmospheric model Meso-NH. The vertical structure of the lower troposphere was experimentally determined from the lidar and sodar measurements, while numerical simulations focused on the propagation of the sea breeze inland. The sea-breeze front, the headwind, the thermal internal boundary layer, the gravity current and the sea-breeze circulation were observed and analysed. The development of a late stratification was also observed by the lidar and simulated by the model, suggesting the formation of a stable multilayered structure. The transport of passive tracers inside the sea breeze and their redistribution above the gravity current was simulated too. Numerical modelling showed that local pollutants may travel backward to the sea above the gravity current at relatively low speed due to the shearing between the landward gravity current and the seaward synoptic wind. Such dynamic conditions may enhance an accumulation of pollutants above coastal industrial areas.  相似文献   

18.
利用浙江省常规气象站观测资料、地面自动站加密资料、新一代多普勒天气雷达资料、NCEP GFS分析资料以及WRF中尺度模式,对2013年7月29日发生在宁波市地区的一个局地强雷暴天气过程进行了诊断分析和数值模拟。通过对天气环流和数值模拟结果的分析发现:本次强雷暴过程发生在较稳定的大气背景下,主要影响系统是中尺度辐合线海风锋;多普勒雷达出现弱窄带回波时,对应中尺度辐合线海风锋;海风锋向内陆推进时,对应站点温度降低、湿度增大。WRF模式能较好地模拟出此次雷暴过程以及宁波地区低层海风锋环流,高空回流随时间和空间的演变特征;海风锋的锋生造成的地转强迫促使次级环流加强,在东西风辐合线西侧有垂直上升运动出现;通过与敏感试验的对比可知,海陆热力差异是影响雷暴降水强度、海风锋水平垂直环流的重要因素。  相似文献   

19.
We present an automated and manual algorithm for identifying past sea breeze episodes in the Bay of Alicante (southeastern coast of the Iberian Peninsula, IP, Spain) for a 6-year study period (2000–2005). The main goal was to provide databases for better understanding the functioning of sea breezes, which have a crucial influence on weather and climate in both coastal and inland areas and therefore affect human life in many ways. The algorithms apply a well-defined set of criteria based on meteorological and sea surface temperature measurements in order to detect past occurrences. The automated and manual identification techniques successfully identified a total of 475 and 1414 sea breeze events, respectively. A large database containing the significant characteristic parameters measured (onset time, cessation time, duration time, maximum wind speed, inland penetration, etc.) for these 475 sea breeze days is presented. We evaluated the accuracy of both selection techniques by means of comparison with independent objective and subjective techniques. Both databases are the major contribution of this paper and have been used in some climatological sea breeze studies and are also presented here for any coastal expert interested in numerical–theoretical, observational–experimental and climatological wind studies.  相似文献   

20.
Nonhydrostatic effects in two-dimensional mesoscale sea breeze systems are investigated by numerical simulations. It is shown that nonhydrostatic effects are directly contributed by the vertical gradients of the vertical velocity variance as well as by the vertical accelerations. It is also shown that a K-type turbulence closure is not suitable in a nonhydrostatic primitive equation model, and a higher-order closure scheme should therefore be used. Results from hydrostatic and fully-nonhydrostatic models are compared for various surface and atmospheric background conditions, such as scale and strength of surface heating, geostrophic wind, stability, surface roughness contrast, Coriolis effect, etc. It is found that for strongly developed sea breeze cases, vertical gradients of vertical velocity variance contribute most to nonhydrostatic forcing in the lower layers, and that the resultant nonhydrostatic pressure gradient acts against the hydrostatic pressure gradient, so that nonhydrostatic simulations produce weaker systems than hydrostatic ones. For weak sea breeze systems, the difference between the two models tends to be small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号