首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— We conducted impact experiments into SiO2‐based aerogel of uniform density (0.02 g cm?3) with spherical corundum projectiles. The highly refractory nature and mechanical strength of corundum minimizes projectile deformation and continuous mass loss by ablation that might have affected earlier experiments with soda‐lime glass (SLG) impactors into aerogel targets. We find that corundum is a vastly superior penetrator producing tracks a factor of 2.5 longer, yet similar in diameter to those made by SLG. At velocities <4 km s?1 a cylindrical “cavity” forms, largely by melting of aerogel. The diameter and length of this cavity increase with velocity and impactor size, and its volume dominates total track volume. A continuously tapering, exceptionally long and slender “stylus” emerges from this cavity and makes up some 80–90% of the total track length; this stylus is characterized by solid‐state deformations. Tracks formed below 4 km s?1 lack the molten cavity and consist only of a stylus. Projectile residues recovered from a track's terminus substantially resemble the initial impactors at V > 4 km s?1, yet they display two distinct surfaces at higher velocities, such as a blunt, forward face and a well‐preserved, hemispherical trailing side; a pronounced, circumferential ridge of compressed and molten aerogel separates these two surfaces. Stringers and patches of melt flow towards the impactor's rear where they accumulate in a characteristic melt tip. SEM‐EDS analyses indicate the presence of Al in these melts at velocities as low as 5.2 km s?1, indicating that the melting point of corundum (2054 °C) was exceeded. The thermal model of aerogel impact by Anderson and Cherne (2008) suggests actual aerogel temperatures <5000 K at comparable conditions. We therefore propose that projectile melting occurs predominantly at those surfaces that are in contact with this very hot aerogel, at the expense of viscous heating and associated ablation. Exposure to superheated aerogel may be viewed as extreme form of “flash heating.” This seems consistent with observations from the Stardust mission to comet Wild 2, such as relatively pristine interiors of rather large, terminal particles, yet total melting of most fine‐grained dust components.  相似文献   

2.
Abstract— Flight aerogel in Stardust allocation C2092,2,80,47,6 contains percent level concentrations of Na, Mg, Al, S, Cl, K, Ca, Cr, Mn, Fe, and Ni that have a distinctive Fe‐ and CI‐normalized distribution pattern, which is similar to this pattern for ppb level chemical impurities in pristine aerogel. The elements in this aerogel background were assimilated in non‐vesicular and vesicular glass with the numerous nanometer Fe‐Ni‐S compound inclusions. After correction for the background values, the chemical data show that this piece of comet Wild 2 dust was probably an aggregate of small (<500 nm) amorphous ferromagnesiosilica grains with many tiny Fe,Ni‐sulfide inclusions plus small Ca‐poor pyroxene grains. This distinctive Fe‐ and CI‐normalized element distribution pattern is found in several Stardust allocations. It appears to be a common feature in glasses of quenched aerogel melts but its exact nature is yet to be established.  相似文献   

3.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   

4.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

5.
Abstract— Aerogel collectors have been used to capture cometary, interplanetary, and interstellar dust grains by NASA's Stardust mission, highlighting their importance as a scientific instrument. Due to the fragile and heterogeneous nature of cometary dust grains, their fragments are found along the walls of tracks that are formed during the capture process. These fragments appear to experience a wide range of thermal alteration and the causes of this variation are not well understood at a theoretical level as physical models of track formation are not well developed. Here, a general model of track formation that allows for the existence of partially and completely vaporized aerogel material in tracks is developed. It is shown that under certain conditions, this general track model reduces to the kinetic “snowplow” model that has previously been proposed. It is also shown, based on energetic considerations, that track formation is dominated by an expansion that is snowplow‐like in the later stages of track formation. The equation of motion for this snowplow‐like stage can be solved analytically, thus placing constraints on the amount of heating experienced by cometary dust fragments embedded in track walls. It is found that the heating of these fragments, for a given impact velocity, is expected to be greater for those embedded in larger tracks. Given the expected future use of aerogels for sample return missions, the results presented here imply that the choice of aerogel compositions can have a significant effect on the modification of samples captured and retrieved by these collectors.  相似文献   

6.
Abstract— In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here, we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called “keystones,” which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom‐designed micromachined silicon fixtures (so called “microforklifts”). In this configuration, the samples are self‐supporting, which can be advantageous in situations where interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques that demand flat samples.  相似文献   

7.
Abstract— Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large‐scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller‐scale cutting capabilities previously described (Westphal 2004; Ishii 2005a, 2005b) for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis. The capability has been implemented in the Stardust Laboratory at NASA's Johnson Space Center as one of a suite of aerogel cutting methods to be used in Stardust sample curation.  相似文献   

8.
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 “Febo” in aerogel, which contains fine‐grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine‐grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Dark‐field imaging and multidetector energy‐dispersive X‐ray mapping were used to compare GEMS‐like‐objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS‐like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant, is present, consistent with ablation, melting, abrasion, and mixing of the SiOx aerogel with crystalline Fe‐sulfide and minor enstatite, high‐Ni sulfide, and augite identified by elemental mapping in the terminal particle. Thus, GEMS‐like objects in “caches” of fine‐grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.  相似文献   

9.
Abstract— We report analyses of aerogel tracks using (1) synchrotron X‐ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X‐ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1–2), and a single ~1 mm aerogel track from the Stardust cometary sample collector (1–3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view (‘lambda‐tomography’). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from ~17 to ~1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3‐D deconvolution method using an estimated point‐spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non‐destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3‐D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle‐aerogel interaction histories of Stardust grains.  相似文献   

10.
Abstract— Powdered Allende projectiles were fired into silica aerogel at 6.1 km/sec in order to evaluate particle retrieval and analysis techniques for samples from the Stardust mission. Since particles may disintegrate and ablate along the penetration paths in a high‐porosity aerogel, TOF‐SIMS analysis may be a suitable method to determine the distribution of such materials along the tracks as well as potential compositional modifications. Therefore, two ?350 μm‐sized tracks, residing at the surface of a keystone specimen that was flattened between two silicon chips, were analyzed. TOF‐SIMS allows for a detailed study of the chemical composition of particles that survived the impact mostly intact and of fine‐grained material from disintegrated projectiles. In the investigated keystone, material from light gas gun debris dominated. Besides the two tracks, a continuous, 40‐μm‐thick surface layer of implanted material—probably gun residue—was found. One of the two analyzed tracks is compositionally distinct from this surface layer and is likely to contain residual material of an Allende projectile. The analyses clearly demonstrate that tracks, resulting from impactors in the 5–10 μm size range, can be successfully analyzed with TOF‐SIMS.  相似文献   

11.
Abstract— In 2006, the Stardust spacecraft will return to Earth with cometary and perhaps interstellar dust particles embedded in silica aerogel collectors for analysis in terrestrial laboratories. These particles will be the first sample return from a solid planetary body since the Apollo missions. In preparation for the return, analogue particles were implanted into a keystone of silica aerogel that had been extracted from bulk silica aerogel using the optical technique described in Westphal et al. (2004). These particles were subsequently analyzed using analytical techniques associated with the use of a nuclear microprobe. The particles have been analyzed using: a) scanning transmission ion microscopy (STIM) that enables quantitative density imaging; b) proton elastic scattering analysis (PESA) and proton backscattering (PBS) for the detection of light elements including hydrogen; and c) proton‐induced X‐ray emission (PIXE) for elements with Z > 11. These analytical techniques have enabled us to quantify the composition of the encapsulated particles. A significant observation from the study is the variable column density of the silica aerogel. We also observed organic contamination within the silica aerogel. The implanted particles were then subjected to focused ion beam (FIB) milling using a 30 keV gallium ion beam to ablate silica aerogel in site‐specific areas to expose embedded particles. An ion polished flat surface of one of the particles was also prepared using the FIB. Here, we show that ion beam techniques have great potential in assisting with the analysis and exposure of Stardust particles.  相似文献   

12.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

13.
Rei Niimi  Toshihiko Kadono 《Icarus》2011,211(2):986-992
A large number of cometary dust particles were captured with low-density silica aerogels by NASA’s Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm−3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ∼4 km s−1 and ∼200 m s−1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 (v: projectile velocity) during the faster penetration process (∼4 km s−1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (∼200 m s−1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).  相似文献   

14.
15.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   

16.
Abstract— Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light‐gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s?1 similar to the flyby speed at comet P/Wild‐2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X‐ray diffraction (SR‐XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE‐SEM). SR‐XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR‐XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.  相似文献   

17.
Large degrees of circular polarization at near-infrared wavelengths have been reported in the OMC1 star-forming region. This discovery, in combination with compelling evidence for the existence of non-spherical aligned grains in star formation regions, has prompted us to investigate scattering from spheroidal particles as a possible mechanism for the production of large circular polarization in reflection nebulae. We use a dipole calculation to model the small particle limit and a T -matrix code to treat arbitrarily sized particles. We find that size distributions of perfectly aligned spheroids, with only modest 2:1 axis ratios, are capable of producing circular polarization of up to 50 per cent when scattering unpolarized incident light. This is the case even for dielectric materials, such as 'astronomical silicate', as long as sufficient large particles are included in the size distribution. We consider the effects of particle alignment and find that spinning oblate spheroids should be much more efficient circular polarizers than equivalent prolate spheroids.  相似文献   

18.
Abstract– We have shown in laboratory experiment that hypervelocity impacts on a solar cell produce ejecta that can be captured on aluminum (Al 1100) foil or in low density (33 kg m?3) aerogel. The origin of the secondary impacts can be determined by either analysis of the residue in the craters in the foils (which preserve an elemental signature of the solar cell components) or by their pointing direction for tracks in the aerogel (which we show align with the impact direction to ± 0.4°). This experimental evidence explains the observations of the NASA Stardust mission which has reported that the majority of tracks in the aerogel collector used to collect interstellar dust actually point at the spacecraft’s solar panels. From our results, we suggest that it should also be possible to recognize secondary ejecta craters in the Stardust mission aluminum foils, also used as dust sampling devices during the mission.  相似文献   

19.
Abstract Fragments from 20 individual particles, collected in the Earth's stratosphere and believed to be interplanetary dust particles (IDPs), were obtained from NASA's Johnson Space Center collection and subjected to step-heating to see if differences in the release pattern for 4He could be observed which might provide clues to the origin of the particles. Comparisons were made to the release pattern for 18 individual lunar surface grains heated in the same manner. Twelve of the IDP fragments contained an appreciable amount of 4He, 50 percent of which was released by the time the particles were heated to approximately 630 °C. For the 18 individual lunar grains the corresponding average temperature was 660 °C. The 3He/4He ratios found for these fragments agreed well with those found for deep Pacific magnetic fines believed to be of extraterrestrial origin, and were comparable to those which have been observed for the solar wind and lunar surface soil grains. Four of the IDP fragments contained appreciably less 4He, and this was released at a higher temperature. The remaining four fragments had too little 4He to permit a determination. From Flynn's analyses of the problem of the heating of IDPs in their descent in the atmosphere, the present results suggest that the parent IDPs of the 12 particles which contained an appreciable amount of 4He suffered very little heating in their descent and are likely of asteroidal origin, although one cannot rule out the possibility that at least some of them had a cometary origin and entered the earth's atmosphere at a grazing angle. Mineralogical and morphological studies on fragments companion to those used in the present investigation are under way. When these are completed, a more definite picture should emerge.  相似文献   

20.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号