首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 203 毫秒
1.
煤层CH4解吸效率低、扩散慢的特点严重制约着煤层瓦斯抽采的效率,为解决低透气性煤层瓦斯抽采困难的问题,选取晋城赵庄煤矿煤样,研究不同注气压力对驱替CH4过程的影响以及驱替过程中CH4扩散系数的变化规律,利用自主研发的CO2驱替CH4试验平台,在0.6、0.8、1.0 MPa等不同注气压力条件下分别进行CO2驱替CH4实验。结果表明:驱替压力越大,达到最大CH4排放量的时间越短,CO2突破时间越快,置换效率越大,驱替效果越好;CH4气体驱替过程分为3个阶段,先急剧增加再缓慢增加最后保持平稳;在同一注气压力下,瓦斯扩散系数随时间呈先增大后减小的变化规律,注气压力为0.6、0.8、1.0 MPa时,瓦斯扩散系数的最大值分别为2.27×10-5、3.36×10-5、4.62×10-5 cm2/s。从实验结果可知,不同注气压力下,CO2对CH4主要起到驱替作用、置换吸附-解吸作用及稀释驱替作用;每个阶段的CH4气体运移情况不同,根据实验阶段合理调整注气流量、压力等参数,使注驱技术搭配更高效。研究结果对CO2深埋与瓦斯(煤层气)高效抽采具有理论指导意义。   相似文献   

2.
基于CO2的吸附能力大于CH4的原理,向深部煤层中注入并封存CO2同时置换驱替CH4增加煤层气井产量,具有环境和经济双重效益。研究深部煤储层特征,通过气、水两相多组分,单孔和双孔模型的三维储层数值模拟技术,模拟不同井底压力下,完成注入量所需要的时间。优化后的注入施工参数为井口注入压力低于10MPa,注入速率低于47 L/min。根据数值模拟结果选定注入压力,注入结果与模拟连续注入时间一致,说明该方法可以有效地模拟注入压力和注入量之间的关系,保障CO2注入施工安全有效。   相似文献   

3.
长期以来针对CO2-ECBM已做了大量研究工作,然而有限的工业试验没能达到预期目的,使得这一煤层气强化技术推广应用欠缺。近些年随着各国碳中和路线的制定,CO2封存逐渐受到重视,煤储层可否作为CO2的封存空间、可否实现CO2驱替CH4和封存同步进行,又重新回归人们的视野。为此,以新疆准南区块目标煤层样为研究对象,采用不同CO2与CH4混合比例气体进行煤的吸附/解吸实验,探索混合气体比例对CO2-ECBM和CO2吸附封存潜力的影响。结果表明,随着混合气体CO2比例减少,CH4驱替效果降低,其中40%CH4+60%CO2混合气体的CO2残余量最多,在解吸至0.7 MPa时已有83.05%的CH4产出,而83.62%的CO2吸附残余在煤中,表明其C...  相似文献   

4.
研究液态CO2相变特征和煤体对气相CO2和CH4的吸附规律,在不同煤质、温度和平衡压力条件下,实验得出在无烟煤和焦煤的煤体中CO2竞相吸附的能力是CH4的1.8~2.4倍。研究发现,液态CO2在0.2 s内完成相变过程,体积瞬间膨胀至794倍。通过理论研究建立了采用不耦合致裂条件下的爆破孔初始冲击压力峰值、裂隙圈有效半径和爆破致裂钻孔孔径3个主要爆破参数变量的数学模型。采用液态CO2瞬间相变出口压力为200MPa的致裂器,进行致裂爆破本煤层增透现场实验研究,研究得出距离致裂爆破孔2m和3m的控制孔在爆破后单孔瓦斯抽采纯量提高至6倍和4倍,单孔瓦斯抽采浓度提高至5倍和4倍,单孔瓦斯抽采浓度保持在35%~55%,而距离致裂爆破孔4m的控制孔在爆破5d后瓦斯抽采效果衰减至爆破前的水平。现场试验得出初始冲击压力峰值200MPa和钻孔孔径0.094m时,本煤层致裂爆破裂隙圈有效半径为3m。  相似文献   

5.
为了研究等压扩散条件下不同变质程度煤中CO2置换CH4特征规律,选择无烟煤、瘦煤和气肥煤3种煤样,进行了不同等压扩散压力下的等压扩散置换实验。实验结果表明:随着煤变质程度的增加煤吸附CH4和CO2的能力表现出逐渐增强的趋势,且CO2的吸附量大于CH4的吸附量;随着实验点扩散压力的增加,CO2对CH4的绝对置换量和置换率均随之增加,CO2对CH4的注置比却随之降低。在实验煤样变质程度范围内,CH4置换率与煤变质程度和CO2注置比均呈负相关关系。研究成果对井下注CO2置换煤层CH4的工程技术和理论具有指导意义。   相似文献   

6.
二元气驱技术(CO2/N2-ECBM)已成为煤层气增产的重要手段,明确CO2/N2在煤层中的竞争吸附规律以及对煤层物性的影响具有重大意义。利用分子模拟软件Materials Studio建立延川南煤层气实际区块温度、压力条件下的煤分子模型。基于巨正则蒙特卡洛(GCMC)方法研究CO2/N2交替驱替煤层气技术中各注入阶段对CH4吸附的影响,明确CO2、N2对煤层孔渗物性的影响规律。结果表明:在CO2注入阶段,煤层中甲烷迅速解吸;煤中气体吸附总量上升,煤基质膨胀效应增强,导致煤的孔隙体积降低。而转N2注入后,由于N2分压作用使得CH4、CO2吸附量呈现出不同程度的降低;当ωN2CO2≤0.6时煤分子中气体总吸附量迅速降低,而当N2饱和吸附后气体总吸附量保持稳定。煤层孔渗物性随着气体吸附总量呈现出迅速增大后趋于平缓的趋势。此外,ωN2CO2>0.6后N2吸附率迅速降低,这会使得产出气中CH4纯度较低,导致后期提纯成本大大增加。因此,当ωN2CO2=0.6左右时,CH4解吸量为最大值,煤孔隙率较高,最有利于煤层气的开发。   相似文献   

7.
针对低渗透性煤层瓦斯抽采难度大、抽采效率低等问题,基于CO2-CH4多组分气体竞争吸附作用,开展了注CO2提高煤层瓦斯抽采率数值模拟与试验研究。首先,建立了考虑气-水两相流与Klinkenberg效应的煤层注CO2促抽瓦斯流-固耦合模型,利用COMSOL软件进行了煤层注CO2后煤层瓦斯压力、瓦斯含量和瓦斯抽采率等参数变化规律,并应用于工程试验。结果表明:构建的气-水两相流瓦斯抽采流-固耦合数学模型可靠、合理;注入CO2抽采煤层气瓦斯压力、瓦斯含量均比未注入CO2抽采下降速率快;现场试验后,注气抽采条件下瓦斯抽采浓度平均值是未注气条件下的2.02倍,瓦斯抽采纯量是后者的3倍。煤层注入CO2气体后,瓦斯抽采量增加,显著促进了煤层瓦斯抽采。   相似文献   

8.
二元气体等温吸附实验及其对煤层甲烷开发的意义   总被引:11,自引:0,他引:11  
分别进行了CH4-CO2和CH4-N2二元混合气体的等温吸附实验, 并且分析了二元气体在吸附过程中各组分浓度的变化规律.结果表明, 在CH4-N2二元气体的吸附过程中, 吸附相中CH4组分的相对浓度逐渐增加, N2组分的相对浓度逐渐减少.在CO2-CH4二元气体的吸附过程中, 吸附相中CO2组分的相对浓度逐渐增加, CH4组分的相对浓度逐渐减少.实验结果证实了CO2在与CH4的竞争吸附中占据优势, 而N2在与CH4的竞争吸附中处于劣势.注入CO2比注入N2可以更有效地置换或驱替煤层甲烷, 提高煤层甲烷的采收率.   相似文献   

9.
为了解高压条件下二氧化碳(CO2)对页岩微观孔隙结构改造及吸附行为,以四川盆地焦页6井页岩为研究对象,通过低温N2吸附和重量法等温吸附实验,研究了不同温压条件下CO2处理前后的页岩微观结构特征及CO2在页岩中的吸附行为.研究表明随处理温度升高,CO2作用后的页岩比表面积呈下降趋势,平均孔径和孔体积呈上升趋势,微孔、中孔比例减少,宏孔比例增大.CO2会改变页岩孔隙结构,改变程度与温度呈正相关关系.研究同时表明页岩对CO2的过剩吸附量随压力增大而增加直至达到最大值,后随压力增大而减小;绝对吸附量随压力增大而增加,在40 MPa之后,吸附量趋于稳定.页岩对CO2的吸附行为与温度压力有关,在高压条件下,Langmuir模型依然能较好地拟合CO2在页岩中的吸附.   相似文献   

10.
深部煤层CO2地质封存是助力“碳达峰碳中和”战略的重要途径,煤层含水性对以CO2吸附封存为主的深部煤层CO2地质封存能力影响显著。以无烟煤为例,开展了45℃下干燥、平衡水、饱和水煤样高压CO2等温吸附实验,校正了饱和水煤样过剩吸附曲线,利用改进的D-R吸附模型拟合得到三者吸附能力与吸附热,对比了不同含水条件下CO2绝对吸附曲线,阐释了饱和水增强无烟煤吸附能力的微观作用机理。结果表明:(1)干燥、平衡水、饱和水煤样CO2吸附能力分别为56.72、45.19和48.36 cm3/g,吸附热分别为29.42、26.23和27.24 kJ/mol。(2) CO2密度小于0.16 g/cm3(6.48 MPa)时,无烟煤CO2绝对吸附量大小顺序为干燥煤样、饱和水煤样和平衡水煤样,而CO2进入超临界状态后,顺序变为饱和水煤样、干燥煤样和平衡水煤样。(3)水分子优先占据高能吸附位是平衡水煤样吸附能力减弱的主要原因,而煤?水体系与CO2相互作用强于CO2与H2O竞争吸附下的煤?CO2相互作用是饱和水煤样在CO2超临界阶段吸附能力高于干燥煤样的根本原因。(4)吸附封存是煤层CO2地质封存的主要形式,深部煤储层条件下,煤层饱和水对超临界CO2增储作用更为明显,高压注水是提高深部煤层CO2地质封存潜力,改善煤储层渗透性的有效手段。   相似文献   

11.
低阶煤甲烷吸附特性研究对瓦斯含量预测、瓦斯抽采及危害防治有着重要意义,为此,选取陕西6个典型矿井低阶煤样,进行低温氮吸附、低压二氧化碳吸附及甲烷等温吸附实验,获得低阶煤吸附孔结构特征。利用微孔填充及单分子层吸附理论定量表征甲烷吸附特征参数与吸附孔结构参数之间的关系,明确吸附孔中甲烷吸附机理。结果表明:吸附孔的比表面积主要由微孔提供,甲烷吸附能力主要受吸附孔孔容大小控制,微孔孔容对吸附孔总孔容的贡献率在74.71%~88.97%。甲烷极限吸附量与吸附孔平均孔径呈线性负相关,与吸附孔孔容、比表面积呈线性正相关,Langmuir压力常数随吸附孔平均孔径、孔容和比表面积的增加仅在小范围内波动,无明显线性相关。6个低阶煤样的分形特征明显,综合分形维数为2.573~2.720,平均值为2.647,说明低阶煤吸附孔非均质性强,甲烷极限吸附量随分形维数增加先增加后减小,整体呈上升趋势。基于微孔填充和单分子层吸附理论可以定量表征低阶煤吸附孔结构与甲烷吸附能力之间的关系,甲烷极限吸附量计算值与实验测试值相对误差较小,长焰煤相对误差为4.47%~6.65%,不黏煤为13.77%~16.02%。研究成果可为后...  相似文献   

12.
高阶煤中的CO2地质埋藏具有存储CO2和提高煤层气采收率的双重意义。通过压汞测试和低温液氮吸附实验对经过CO2地质埋藏模拟实验处理前后的煤样品进行分析测试,探讨了不同埋藏深度下煤中孔隙演化的特征与机理。研究表明:煤的真密度、视密度、孔隙体积、煤基质体积变化、有机质膨胀与收缩等参数均表现出不同的演化特征;埋藏过程中温度压力的增大对H2O–CO2–煤的地球化学反应效应的影响并非线性,而是存在一个对孔隙特别是微孔孔容和比表面积改造最大的深度范围,该深度将使得高阶煤孔隙结构得到最佳的改造效果,从而进一步更有利CO2的地质埋藏和提高煤层气的采收率。   相似文献   

13.
为了研究页岩对气体的吸附机理,在50℃、60℃、80℃ 3个温度点对贵州凤参1井和天马1井的页岩样品进行等温吸附实验,并绘制出了CH4和CO2等温吸附曲线图,计算得到页岩表面自由能,从自由能角度分析页岩对CH4和CO2气体的吸附特性。研究结果表明:当温度一定时,随着压力的增加,页岩对2种气体的表面自由能变化值均呈现出不断增加的趋势,当压力一定时,随着温度的增加,表面自由能会逐渐减小,这与等温吸附曲线上气体吸附量随压力的变化是一致的;页岩对CO2的表面自由能变化值均要大于CH4,表明页岩对CO2的吸附能力比CH 4 更强,可以通过向页岩层中注入CO2来提高采收率;对于吸附能力较强的页岩气藏,可以通过注入表面活性剂的方法,增强活性剂与页岩表面的结合能力,降低CH4占有面积及其与页岩的表面自由能,以此达到促使CH4解吸的目的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号