首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It is generally accepted that pick-up ions act as a seed population for anomalous cosmic rays originating at the solar wind termination shock. We believe that the ion pre-acceleration process operating in the heliosphere up to the termination shock can be very important to inject the ions into the shock acceleration process. The pick-up ions pre-accelerated by solar wind turbulences have already a pronounced high energy tail when they reach the shock. Some fraction of these ions can experience further acceleration up to energies of anomalous cosmic rays by means of shock drift and diffusive acceleration. In the present paper the shock drift acceleration of pick-up ions suffering multiple reflection due to abrupt changes in both the strength and direction of the magnetic field through the shock is considered. The reflection process operates for high velocity particles different from the reflection by the electric cross-shock potential. During the first reflection the mean kinetic energy of pick-up ions increases by approximately a factor of 10. Reflected particles have highly anisotropic velocity distribution. Subsequent excursion of the particles in the turbulent upstream flow leads to diffusion in pitch-angle space and, as a result, the particles can return to the shock again suffering, thus, multiple encounters. In order to describe the motion of particles in the upstream and down streamparts of the flow we solve the Fokker-Plank transport equation for anisotropic velocity distribution function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The influences of the shock thickness and Alfven waves on the particle acceleration by diffusive shock waves are numerically studied through solving one-dimensional diffusive equation including the second-order Fermi effect. It is shown that the spectral index of the energetic particles strongly depends on the shock thickness. For example, the spectral index increases from 2.1 to 3.7 in the low energy range of 3—10 MeV and from 2.5 to 5.0 in the high energy range of 20—60 MeV as the thickness increases. The spectral index decreases from 4.3 to 3.1 as the particle injection energy increases. The spectral index decreases from 4.0 to 1.8 at the quasi-steady stage with the enhancement of the compression ratio from 2 to 4. The results indicate that under the influence of Alfven waves, the energetic particle spectrum at lower energy becomes flat and the spectral index decreases from 2.5 to 0.6 in the low energy range of 3—10 MeV and from 11.6 to 5.0 in the high energy range of 20—60 MeV. At the same time, the turning point energy reaches 19.6 MeV. The spectral index decreases from 5.8 to 2.9 as the energy density of Alfven waves increases. All these results are basically consistent with the theoretical models, as well as the observations of typical energetic particle events.  相似文献   

5.
I review some basic properties of diffusive shock acceleration (DSA) in the context of young supernova remnants (SNRs). I also point out some key differences with cosmological, cluster-related shocks. DSA seems to be very efficient in strong, young SNR shocks. Provided the magnetic fields exceed some hundreds of μGauss (possibly amplified by CR related dynamics), these shocks can accelerate cosmic ray hadrons to PeV energies in the time available to them. Electron energies, limited by radiative losses, are likely limited to the TeV range. Injection of fresh particles at these shocks is poorly understood, but hadrons are much more easily injected than the more highly magnetized electrons. That seems supported by observational data, as well. So, while CR protons in young SNRs may play very major roles in the SNR evolution, the CR electron populations have minimal such impact, despite their observational importance.  相似文献   

6.
Vandas  M.  Karlický  M. 《Solar physics》2000,197(1):85-99
It is commonly believed that solar type II bursts are caused by accelerated electrons at a shock front. Holman and Pesses (1983) suggested that electrons creating type II bursts are accelerated by the shock drift mechanism. Zlobec et al. (1993) dealt with a fine structure of type II bursts (herringbones) and suggested a qualitative model where electrons are accelerated by a nearly perpendicular wavy shock front. Using this idea, we developed a model of electron acceleration by such a wavy shock front. Electrons are accelerated by the drift mechanism in the shock layer. Under simplifying assumptions it is possible to obtain an analytical solution of electron motion in the wavy shock front. The calculations show that electrons are rarely reflected more than once at the wavy shock front and that their final energy is mostly 1–3 times the initial one. Their acceleration does not depend significantly on shock spatial parameters. In the present model all electrons are eventually transmitted downstream where they form two downstream beams. Resulting spectral and angular distributions of accelerated electrons are presented and the relevance of the model to the herringbone beams is discussed.  相似文献   

7.
通过数值求解包含二阶费米加速的一维扩散方程,探讨在准平行激波条件下激波厚度和级联阿尔芬波对粒子加速的影响,研究粒子分布函数的演化与激波厚度和阿尔芬波强度的内禀关系.计算结果表明:(1)考虑激波厚度时,谱指数明显依赖于激波厚度,随着厚度从0.32增大到2.56,低能端(3-10 MeV)谱指数逐渐从2.1增加到3.7,高能端(20-60 MeV)谱指数从2.4增大到5.0,能谱逐渐变软;当初始注入粒子动量增大1.3倍,质子能谱指数从4.3减小到3.1,且与零厚度激波加速的谱指数差值缩小;厚度不变时,随着压缩比从2增加到4,准稳态分布时低能端(3-10 MeV)粒子能谱指数逐渐从4.0减小到1.8谱变硬;(2)在级联阿尔芬波的影响下,随着时间的增大,粒子在低能处(3-10 MeV)的谱指数从2.5减小到0.6高能端(20-60 MeV)谱指数从11.6减小到5.0,能谱变硬,拐点能量值从7.5 MeV增大到为19.6 MeV;随着波的能量密度增大,谱指数从5.8减小到2.9,这表明阿尔芬波强度越大,加速效率越高.通过与激波厚度解析结果和高能粒子事件的观测能谱比较发现两者是一致的,说明数值模拟结果是可靠的.  相似文献   

8.
1 INTRoDUCTIONB1azars are rwho-loud AGNs characterized by emissions of strong and raPidiy wriablenOllthermal radiation over the elltire electromagntic spectrum. Syndritron ehasha followedby inverse ComPton scattering in a re1aivistic jet and beamd inio one directiOn is generallythought to be the IneCha8m powering these Objects (Kollgaard 1994; Urry & Paded 1995).All blazars have a sPectral energy distribution (SED) with tWO peak8 in a uFv rePesentation(von Montigny et al. 1995; S…  相似文献   

9.
We review the particle-in-cell simulation results related to the recently discovered particle acceleration mechanism called the Diamagnetic Relativistic Pulse Accelerator, or DRPA. This mechanism may be relevant to the prompt gamma-ray emission of gamma-ray bursts. It may also be testable with future laboratory experiments using ultra-intense lasers.  相似文献   

10.
11.
12.
C.R. O&#x;Dell 《Icarus》1974,21(1):96-99
The particle size distribution in the coma and tail of Comet Bennett has been determined by several methods, each sensitive to a particular size range. It is confirmed that a minimum value of the particle density (?), size (d), and radiation pressure efficiency (Qrp) function (?d/Qrp) exists at about 3–10 sx 10?5g cm?2. The existence of such a cutoff is probably due to the decreasing radiation pressure efficiency for particles smaller than the wavelength of the light being scattered. An exact determination of this cutoff may allow identification of the particle type.  相似文献   

13.
We simulate the likely noisy situation near a reconnection region by superposing many 2D linear reconnection eigenmodes. The superposition of modes on the steady state X-type magnetic field creates multiple X- and O-type neutral points close to the original neutral point and so increases the size of the non-adiabatic region. We study test particle trajectories of initially thermal protons in these fields. Protons become trapped in this region and are accelerated by the turbulent electric field to energies up to 1 MeV in time scales relevant to solar flares. Higher energies are achieved due to the interaction of particles with increasingly turbulent electric and magnetic fields.  相似文献   

14.
Various topological features, for example magnetic null points and separators, have been inferred as likely sites of magnetic reconnection and particle acceleration in the solar atmosphere. In fact, magnetic reconnection is not constrained to solely take place at or near such topological features and may also take place in the absence of such features. Studies of particle acceleration using non-topological reconnection experiments embedded in the solar atmosphere are uncommon. We aim to investigate and characterise particle behaviour in a model of magnetic reconnection which causes an arcade of solar coronal magnetic field to twist and form an erupting flux rope, crucially in the absence of any common topological features where reconnection is often thought to occur. We use a numerical scheme that evolves the gyro-averaged orbit equations of single electrons and protons in time and space, and simulate the gyromotion of particles in a fully analytical global field model. We observe and discuss how the magnetic and electric fields of the model and the initial conditions of each orbit may lead to acceleration of protons and electrons up to 2 MeV in energy (depending on model parameters). We describe the morphology of time-dependent acceleration and impact sites for each particle species and compare our findings to those recovered by topologically based studies of three-dimensional (3D) reconnection and particle acceleration. We also broadly compare aspects of our findings to general observational features typically seen during two-ribbon flare events.  相似文献   

15.
16.
Particle acceleration via Poynting vector with toroidal magnetic field is studied in 3D PIC simulation of electron-positron plasma. We choose two different initial magnetic field configurations to compare how the particle acceleration is affected by the expansion of electromagnetic wave. In the cylindrical case, the electromagnetic field strength decays as (ct)−2, and particles are accelerated in the radial direction as well as the axial direction. Rayleigh-Taylor instability is also observed at the center of the cylinder. In the torus case, the field strength decays as (ct)−3, making the acceleration less efficient. Particles accelerated in the axial direction by E × B force creates strong charge separation.  相似文献   

17.
18.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

19.
Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical environments. These include magnetic field amplification in shock ramps, the non-linear hydrodynamic interplay between thermal ions and their extremely energetic counterparts possessing ultrarelativistic energies, and the ability to inject and accelerate electrons in both non-relativistic and relativistic shocks. Recent observational developments that impact these issues are summarized. While these topics are currently being probed by astrophysicists using numerical simulations, they are also ripe for investigation in laboratory experiments, which potentially can provide valuable insights into the physics of cosmic shocks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号