首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V. Krishan 《Solar physics》1980,68(2):343-350
An energetic proton beam passing through a stationary ionized medium, excites ion-acoustic turbulence. The ion-acoustic instability saturates due to the non-linear indirect wave-particle scattering. The electric field associated with the ion-acoustic waves accelerates the plasma particles. Applicability of the results to cometary tails is discussed.  相似文献   

2.
The KdV equation is derived for weakly nonlinear ion-acoustic waves in an unmagnetized warm dusty plasma with electron inertia. It has been shown that the inclusion of electron inertia and pressure variation of the species not only significantly modifies the basic features (width and amplitude) of dust ion-acoustic solitions, but also introduces a new parametric regime for the existence of positive and negative solitons.  相似文献   

3.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

4.
Weak ion-acoustic solitary waves (IASWs) in unmagnetized plasmas having two-fluid ions and kappa-distributed electrons are considered. The effects of electron suprathermality, warm ion temperature and polarity on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures.  相似文献   

5.
Through solving the single electron equation of motion and the Fokker-Planck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10^-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.  相似文献   

6.
A Langevin equation for charged particles in a plasma with electrostatic turbulence is developed from first principles and in consistency with the kinetic theory in polarization approximation. For the case of ion-acoustic and electrostatic lower-hybrid-drift turbulence approximate expressions for the space-time spectral density of the wave energy are given and estimates of the intensities of the stochastic wave forces are made. The application is done for the plasmas of the earth's magnetosphere, the solar wind and solar flares. It seems, that ion-acoustic and electrostatic lower-hybrid-drift waves can contribute to electron chaotization in different regions of the space plasma.  相似文献   

7.
Existence and characteristics of ion-acoustic (IA) wave modulation are studied in a plasma with two-temperature electron satisfying kappa distribution. Based on the multiple time scales perturbation, a nonlinear Schrödinger equation (NLS) is derived. Similar to the case of double Maxwellian electrons, both polarities of envelope soliton can exist over restricted ranges of the fractional hot electron density ratio and two-temperature superthermal electrons. The transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in the presence of cool and hot superthermal electrons. It is shown that the small values of the hot electron populations leads to shrinking the modulation instability region. It is also found the instability growth rate reduces due to the presence of hot electrons. The result of present investigation contributes to the physics of wave modulation in Saturn’s magnetosphere where two-temperature electrons with kappa distribution exist.  相似文献   

8.
The propagation of ion-acoustic waves by the augmentation of Kadomtsev-Petviashvili equation are studied in a plasma in relation to that existing in the interplanetary space. We precisely pointed out the causes of occuring the double layers as well as collapsing of the solitary waves in the plasma dynamics.  相似文献   

9.
Based on model calculations, we show that ion-acoustic oscillations can be excited by heat fluxes in a plasma. We discuss the probable effect of ion-acoustic oscillations on the formation of temperature gradients at critical heat fluxes. The local critical heat flux in the transition region of the solar atmosphere is close to the well-known experimental heat flux from the corona into the chromosphere.  相似文献   

10.
11.
We consider the problem of ion-acoustic wave generation, and resultant anomalous Joule heating, by a return current driven unstable by a small-area thick-target electron beam in solar flares. With a prescribed beam current evolution, j b (t) (and, therefore, a prescribed return current j p (t) = –j b (t)), and using an approximate local treatment with a two component Maxwellian plasma, and neglecting energy losses, we demonstrate the existence of two quite distinct types of ion-acoustic unstable heating regimes. First, marginally stable heating occurs when the onset of instability occurs at electron-ion temperature ratios T e /T i > 4.8. Secondly, there exists a catastrophic heating regime for which marginally stable evolution is impossible, when the onset of instability occurs at T e /T i < 4.8.For the marginally stable case, we solve the electron and ion heating equations numerically and find that rapid anomalous Ohmic heating occurs in a substantial plasma volume. This large hot plasma emits thermal bremsstrahlung hard X-rays ( 20 keV) comparable to, or exceeding, the nonthermal bremsstrahlung which would have been emitted by the beam in a conventional thick target, large area, collisional scenario without anomalous effects. This means that, contrary to the usual assumption, onset of return current instability need not turn off hard X-ray production by a beam, though changing its source from direct to indirect. Indeed with small beam areas, this indirect mechanism can result in a higher hard X-ray bremsstrahlung efficiency than in a conventional collisional thick target.The catastrophic heating regime, for which we expect much larger wave levels, is discussed qualitatively, and preliminary results cited of an alternative approach, incorporating an equation directly describing the electrostatic wave energy level. Which of these two regimes will pertain in any particular case depends (discontinuously) on the beam and atmospheric parameters and we suggest that this effect may manifest itself in the distinctive temporal behaviour of X-ray flares.  相似文献   

12.
Using a one-dimensional electrostatic particle code, we examine processes associated with current interruption in a collisionless plasma when a density depression is present along the current channel. Current interruption due to double layers was suggested by Alfvén and Carlqvist (1967) as a cause of solar flares. At a local density depression, plasma instabilities caused by an electron current flow are accentuated, leading to current disruption. Our simulation study encompasses a wide range of the parameters in such a way that under appropriate conditions, both the Alfvén and Carlqvist (1967) regime and the Smith and Priest (1972) regime take place. In the latter regime the density depression decays into a stationary structure (ion-acoustic layer) which spawns a series of ion-acoustic solitons and ion phase space holes travelling upstream. A large inductance of the current circuit tends to enhance the plasma instabilities.  相似文献   

13.
For an unmagnetized collisionless electron–positron–ion plasma, the effects of trapped and non-thermal electron distributions are incorporated in the study of arbitrary amplitude ion-acoustic solitary structures. Both highly and weakly analyses are examined by deriving an energy integral equation involving the Sagdeev potential for the large amplitude limit, and obtaining the non-linear partial-differential equations for the small but finite amplitude limit. It is shown that there exist ion-acoustic solitary waves with qualitatively different structures in a way that depend on the population of trapped and non-thermal electrons. In the presence of trapped electrons, fully non-linear analyses show that plasma can support only arbitrary amplitude compressive solitary waves. On the other hand, a consideration of the fast or non-thermal electron distribution provides the possibility of the coexistence of large amplitude compressive and rarefactive solitary waves, whereas both of them are decoupled in the small amplitude limit. It is found that the effects of such electron distributions and positron concentration change the maximum values of the Mach number and the amplitude for which solitary waves can exist. Furthermore, the non-thermally distributed electrons provide a KdV equation in the small amplitude limit, whereas the trapped electrons give rise to a modified KdV equation which exhibits a stronger non-linearity.  相似文献   

14.
Ion–acoustic double layers has been studied in magnetized electron-positron-ion plasma. The modified Korteweg-de Vries (m-KdV) is derived using reductive perturbation method. It is found that for the selected set of parameters, the system supports rarefactive (compressive) double layers depending upon the values of cold electron concentration (μ). It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, as we increases the magnetization, the width of the double layer increases and an increases in the obliqueness θ, where θ is the angle between wave vector and magnetic field, the width of the double layer also increases. The angle of obliqueness θ does not affects the amplitude of the double layer. It is also investigated that for the given set of parameter values, on increasing the positron concentration the amplitude of the rarefactive (compressive) double layer decreases (increases), and the width of the rarefactive (compressive) double layer increases (decreases). The effect of the temperature ratios of ions and positron on the amplitude and width of the double layers are discussed.  相似文献   

15.
The effects of dust charge fluctuations and deviations from isothermality of electrons are incorporated in the study of nonlinear dust ion-acoustic waves. Deviations from isothermality of electrons are included in this model as a result of nonlinear resonant interaction of the electrostatic wave potential with electrons during its evolution. The basic properties of stationary structures are studied by employing the reductive perturbation method, and conditions for the formation of small but finite amplitude dust ion-acoustic solitary waves in the space dusty plasma situations are clearly explained. It is shown that a more depletion of the background free electrons owing to the attachment of these electrons to the surface of the dust grains during the charging process can lead to the formation of solitary waves with smaller amplitude. Furthermore, effects of the dust charge fluctuation and deviations from isothermality of electrons show a non-uniform behavior for the amplitude of solitary waves in transition from the Boltzmann electron distribution to a trapped electron one. It is also found that the dust charge fluctuation caused by trapped as well as free electrons is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves.  相似文献   

16.
K. H. Tsui 《Solar physics》1996,168(1):171-182
The generation of bright solar radio spikes by the beam-driven cyclotron resonance maser mechanism (the resonant interaction of an electron beam with a circularly polarized wave in a background plasma under the action of a guide magnetic field) is studied. Nonlinear effects such as radiation damping and gyrophase bunching on electron energy and momentum are responsible for the enhanced direct energy conversion between the beam and the coherent wave. Factors such as beam energy spread and pitch angle distribution are analyzed. The intense maser radiation is carried at the source by the circularly polarized wave propagating along the magnetic field. Due to the magnetic field curvature, the outgoing maser radiation converts into extraordinary and ordinary modes. The extraordinary mode suffers from plasma absorption at the second harmonic layer, whereas the ordinary mode is likely to get through.  相似文献   

17.
A theoretical investigation is carried out for understanding the basic features of oblique propagation of linear and nonlinear ion-acoustic waves subjected to an external magnetic field in an electron-positron-ion plasma which consists of a cold magnetized ion fluid, Boltzmann distributed positron, and electrons obeying a trapped distribution. In the linear regime, two dispersion curves are obtained. It is shown that the positron concentration causes the both modes to propagate with smaller phase velocities. Then, owing to the presence of resonant electrons, the modified Korteweg-de Vries equation describing the nonlinear dynamics of small but finite amplitude ion-acoustic waves is derived. It is found that the effects of external magnetic field (obliqueness), trapped electrons, positron concentration and temperature ratio significantly modify the basic features of solitary waves.  相似文献   

18.
本文研究了Blazar天体的辐射性质,提出一种新的喷流模型,即具有幂律分布的极端相对论电子团从中心核注入喷流等离子体中,它在一定的注入速度下,不仅能在喷流等离子体中激发等离子体湍动,产生电磁波的相干辐射,而且能产生强的同步辐射。利用等离子体的弱湍理论,我们研究了极端相对论电子团在喷流等离子体中的辐射过程,并详细研究了它在解释Blazar天体辐射特性中的应用,本文认为,Blazar天体的不稳定辐射与极端相对论电子团的无规注入、喷流等离子体的物理环境瞬息变化有关。Blazar中快速变化的辐射偏振角摆动。产生于相对论电子团在湍动等离子体中的同步辐射过程。另外,X选和射电选的BLLac天体之间的区别取决于喷流等离子体的运动状态和物理环境。  相似文献   

19.
A model for ion-acoustic waves in the solar atmosphere is presented. In the limit of strongly magnetized plasma this model leads to the Zakharov-Kuznetsov equation which possesses a flat solitary wave solution. An initial-value problem for this equation is solved numerically to show a transition of the flat solitary waves into spherical solitary waves. The paper suggests further developments of an ion-acoustic wave theory that may improve our knowledge of ion-acoustic waves and lead to the possibility of their being detected in the solar atmosphere.  相似文献   

20.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号