首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Almost all ray-tracing methods ignore the analysis of the amplitudes of seismic arrivals and therefore utilize only half of the available information. We propose a method which is a combination of ray-tracing imaging and transformation of the amplitudes of wide-aperture data. Seismic data in the conventional X-T domain are first transformed to the domain of intercept time τ and ray parameter p to recover the plane wave response. The next step is the derivation of a series of plane wave reflection coefficients, which are mapped as a function of τ and p. The reflection coefficients R(τ, p) for two arbitrarily chosen traces can then be used in our inversion method to derive a slowness-depth and a density-depth profile. It is shown that the inclusion of amplitudes of seismic arrivals (in this method, we consider the acoustic case) makes the inverse method highly stable and accurate. In a horizontally stratified medium one can recover separate profiles of velocity and density. Since this method utilizes large-offset data, it can be used for separate recovery of velocity and density to a greater depth.  相似文献   

2.
本文对利用强震近场加速度记录确定时,空、强三个完整的震源参数。文中给出一种利用计算机自动识别地震记录的P波初动到时和S波震相到的算法。根据新近发表的Wood-Anderson地震仪器的最新参数,修牍正唐山地区量规函数。利用唐 山数字震观测台阵得到的近场加速度数据,计算了10次地震的震源位置和震级,并对定位误差进行了综合分析,将强震台网测定的震源参数与地震台  相似文献   

3.
Estimation of Thomsen's anisotropic parameters is very important for accuratetime-to-depth conversion and depth migration data processing. Compared with othermethods, it is much easier and more reliable to estimate anisotropic parameters that arerequired for surface seismic depth imaging from vertical seismic profile (VSP) data, becausethe first arrivals of VSP data can be picked with much higher accuracy. In this study, wedeveloped a method for estimating Thomsen's P-wave anisotropic parameters in VTImedia using the first arrivals from walkaway VSP data. Model first-arrival travel times arecalculated on the basis of the near-offset normal moveout correction velocity in VTI mediaand ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropicparameters 0 and e are determined by minimizing the difference between the calculatedand observed travel times for the near and far offsets. Numerical forward modeling, usingthe proposed method indicates that errors between the estimated and measured anisotropicparameters are small. Using field data from an eight-azimuth walkaway VSP in TarimBasin, we estimated the parameters 0 and e and built an anisotropic depth-velocity modelfor prestack depth migration processing of surface 3D seismic data. The results showimprovement in imaging the carbonate reservoirs and minimizing the depth errors of thegeological targets.  相似文献   

4.
Multiple coverage reflection seismic data provide an important source of information concerning the subsurface. However, due to the stacking and migration techniques used in the processing, the first arrivals are muted and details about the upper part of the sections are generally lost. This paper describes a computerized method for the inverse modelling of laterally varying velocities and shallow depths which are not sufficiently resolved in the reflection seismic processing. The method minimizes, in a least-squares manner, the difference between the observed first arrivals, picked from the reflection traces, and a set of synthetic traveltimes, calculated by ray tracing in a cell model. An initial model, e.g. from a priori knowledge or the application of a conventional interpretation method, is refined iteratively until no further essential improvement can be achieved. Traditional first-arrival inversion methods cannot, in general, provide such flexible modelling. The technique is successfully tested on synthetic data as well as on first arrivals picked automatically from the records of a reflection seismic survey in North Jutland, Denmark.  相似文献   

5.
The paper discusses microseismic monitoring during oil well stimulation by hydraulic fracturing, an emergent technology used for hydraulic fracturing layer control. The passive monitoring is a new widely developing technology of HFL control. The main factor affecting the results of passive seismic monitoring is the event location accuracy. The passive monitoring acquisition system utilizes one three components seismic probe deployed into the observation well. To evaluate the location accuracy of induced events for one observation well we applied traditional kinematic approach based on picking of earthquake P- and S-waves arrivals. The influence of geometric parameters of geophones location in a borehole, their quantity, picking errors of waves arrivals on the accuracy of microearthquakes location is studied.  相似文献   

6.
在地震早期预警系统中具破坏性地震震中的确定速度十分重要.本文提出了地震发生后根据1个、2个、3个台站P波到时记录进行动态、近实时确定地震发生区域、线区间和震中位置的方法.方法充分考虑了地震触发台站和非触发台站分布与地震波传播规律的一致性和差异性特征,提高了震中定位结果的精度.对由79个台站组成的山东虚拟测震台网2009-2010年期间记录的425次网内地震进行了快速定位,结果表明对发生在网内的地震可在要求时间内给出比较准确的震中位置,可满足预警地震速报时效性和精度的双重要求.  相似文献   

7.
—?Plans for a hydroacoustic network intended to monitor compliance with the CTBT call for the inclusion of five T-phase stations situated at optimal locations for the detection of seismic phases converted from ocean-borne T phases. We examine factors affecting the sensitivity of land-based stations to the seismic T phase. The acoustic to seismic coupling phenomenon is described by upslope propagation of an acoustic ray impinging at a sloping elastic wedge. We examine acoustic to seismic coupling characteristics for two cases; the first in which the shear velocity of the bottom is greater than the compressional velocity of the fluid (i.e., v p > v s > v w ), the second is a weakly elastic solid in which v s << v w < v p . The former is representative of velocities in solid rock, which might be encountered at volcanic islands; the latter is representative of marine sediments. For the case where v s > v w , we show that acoustic energy couples primarily to shear wave energy, except at very high slope angles. We show that the weakly elastic solid (i.e., v s << v w ) behaves nearly like a fluid bottom, with acoustic energy coupling to both P and S waves even at low slope angles.¶We examine converted T-wave arrivals at northern California seismic stations for two event clusters; one a series of earthquakes near the Hawaiian Islands, the other a series of nuclear tests conducted near the Tuamoto archipelago. Each cluster yielded characteristic arrivals at each station which were consistent from event to event within a cluster, but differed between clusters. The seismic T-phases consisted of both P- and S-wave arrivals, consistent with the conversion of acoustic to seismic energy at a gently sloping sediment-covered seafloor. In general, the amplitudes of the seismic T phases were highest for stations nearest the continental slope, where seafloor slopes are greatest, however noise levels decrease rapidly with increasing distance from the coastline, so that T-wave arrivals were observable at distances reaching several hundred kilometers from the coast. Signal-to-noise levels at the seismic stations are lower over the entire frequency spectrum than at the Pt. Sur hydrophone nearby, and decrease more rapidly with increasing frequency, particularly for stations furthest from the continental slope.  相似文献   

8.
通过砂土的一系列动三轴实验,研究不规则地震荷载作用下与定次数等幅荷载作用下土体变形间的关系,给出砂土相对密实度对二者间关系的影响规律。结果表明:真实地震荷载下土的变形发展与等幅正弦荷载明显不同,应变发展时程的形态主要受地震动的形态控制;应变比C与砂土相对密度间关系具有规律性,随相对密度增大而降低,若采用以20周作为标准作用次数、0.65倍地震波峰值为等幅荷载代替不规则的地震荷载,修正真实地震应力下的残余变形,其应变比C随砂土密实度的增大而减小。同时,冲击型荷载的应变比C`要远大于振动型荷载。  相似文献   

9.
We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5–2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts’ experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a distance of about 2,000 km from the main shock was formed by three stations, with the stations and both events on the same great circle. Such spurious events are rejected by checking consistency between detections at stations at different back azimuths from the source region. Two additional effective pre-filters are f–k analysis and F prob based on correlation traces instead of original waveforms. Overall, waveform cross-correlation is able to improve the REB completeness, to reduce the workload related to IDC interactive analysis, and to provide a precise tool for quality check for both arrivals and events. Some major improvements in automatic and interactive processing achieved by cross-correlation are illustrated using an aftershock sequence from a large continental earthquake. Exploring this sequence, we describe schematically the next steps for the development of a processing pipeline parallel to the existing IDC one in order to improve the quality of the REB together with the reduction of the magnitude threshold.  相似文献   

10.
We analyze the ground motion time histories due to the local seismicity near the Itoiz reservoir to estimate the near-source, surface 3D displacement gradients and dynamic deformations. The seismic data were obtained by a semipermanent broadband and accelerometric network located on surface and at underground sites. The dynamic deformation field was calculated by two different methodologies: first, by the seismo-geodetic method using the data from a three-station microarray located close to the dam, and second, by single station estimates of the displacement gradients. The dynamic deformations obtained from both methods were compared and analyzed in the context of the local free-field effects. The shallow 1D velocity structure was estimated from the seismic data by modeling the body wave travel times. Time histories obtained from both methods result quite similar in the time window of body wave arrivals. The strain misfits between methods vary from 1.4 to 35.0 % and rotational misfits vary from 2.5 to 36.0 %. Amplitudes of displacement gradients vary in the range of 10?8 to 10?7 strains. From these results, a new scaling analysis by numerical modeling is proposed in order to estimate the peak dynamic deformations for different magnitudes, up to the expected maximum M w in the region (M5.5). Peak dynamic deformations due to local M w5.5 earthquakes would reach amplitudes of 10?5 strain and 10?3 radians at the Itoiz dam. The single station method shows to be an adequate option for the analysis of local seismicity, where few three-component stations are available. The results obtained here could help to extend the applicability of these methodologies to other sites of engineering interest.  相似文献   

11.
The presence of the water layer in marine seismic prospecting provides an effective waveguide for acoustic energy trapped between the sea-bed and the sea-surface. This energy persists to large ranges and can be the dominant early feature on far-offset traces. On airgun records, there is commonly a lower frequency set of arrivals following the water-trapped waves. These arrivals are not as obvious with higher frequency watergun sources. By using a combination of intercept-time/slowness (τ—p) mapping on observational data and theoretical modelling, we are able to identify the origin of the events. If a very rapid increase in a seismic wavespeed occurs beneath the sea-bed sediments, a new waveguide is formed bounded by the sea surface and this transition zone. The low frequency waves are principally guided within this thicker waveguide. Numerical filtering in the τ—p domain followed by trace reconstruction is very effective in removing the low frequency noise.  相似文献   

12.
城市扩张和人类活动所带来的环境干扰已经越来越严重地影响到地震监测,给地震参数的确定和其他地球物理研究造成不确定性。本研究以处于高环境噪声的防灾地震台记录的2008年5月12日汶川地震波形资料为例,给出如何采用数字信号处理手段从强干扰环境下提取到地震波有效信号,并按方位角和出射角方向对地震信号各分向信号进行了分解与组合,最后归纳出提取有效信号的一般过程。  相似文献   

13.
为监测东祁连山北缘断裂带附近的地震活动性,布设包含240台短周期地震仪的面状密集台阵,进行约30 d的连续观测。首先使用基于深度学习的多台站地震事件检测算法(CNNDetector)进行地震事件检测,然后使用震相拾取网络(PhaseNet)对地震事件进行P波和S波到时拾取,其次使用震相关联算法(REAL)进行震相关联及初定位,最后使用双差定位(hypoDD)进行地震重定位,最终的精定位地震目录中共有517个地震。在密集台阵观测期间,中国地震台网正式地震目录中共有39个位于台阵内的地震事件,相比而言,密集台阵检测到大量小于0级的地震。因此通过布设密集台阵,可提高活动断裂微地震活动性的监测能力。与历史地震空间分布相比,密集台阵地震精定位分布具有较好的一致性,表现出更明显的线性分布特征。基于地震分布,发现研究区域存在与地表断层迹线走向不同的隐伏活跃断裂。  相似文献   

14.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

15.
Seismic noise attenuation is very important for seismic data analysis and interpretation, especially for 3D seismic data. In this paper, we propose a novel method for 3D seismic random noise attenuation by applying noncausal regularized nonstationary autoregression (NRNA) in f–x–y domain. The proposed method, 3D NRNA (f–x–y domain) is the extended version of 2D NRNA (f–x domain). f–x–y NRNA can adaptively estimate seismic events of which slopes vary in 3D space. The key idea of this paper is to consider that the central trace can be predicted by all around this trace from all directions in 3D seismic cube, while the 2D f–x NRNA just considers that the middle trace can be predicted by adjacent traces along one space direction. 3D f–x–y NRNA uses more information from circumjacent traces than 2D f–x NRNA to estimate signals. Shaping regularization technology guarantees that the nonstationary autoregression problem can be realizable in mathematics with high computational efficiency. Synthetic and field data examples demonstrate that, compared with f–x NRNA method, f–x–y NRNA can be more effective in suppressing random noise and improve trace-by-trace consistency, which are useful in conjunction with interactive interpretation and auto-picking tools such as automatic event tracking.  相似文献   

16.
The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.  相似文献   

17.
Signal extraction from overlapping seismic records is a common problem in geophysical data analysis. Identification and separation of multiple seismic arrivals, analysis of large earthquakes as multiple point sources, and calculation of the true yield of a large nuclear explosion from interfering small explosion, all hinge on our ability to effectively decouple two interfering wave signals. This paper presents a method for signal separation based on an adaptive filtering technique. We apply a semi-deconvolution algorithm to overlapping explosion records and S/SKS phase groups, and then perform noise reduction and signal decoupling under different a priori conditions and assess the stabilities using a variance reduction approach. We demonstrate, through numerical experiments and analysis of seismic station records, that the adaptive method can be both robust and practical for regional and teleseismic applications.  相似文献   

18.
The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others.This work compares some popular 2D seismic modelling codes using the dataset collected along the seismic wide-angle profile DOBRE-4, where quite peculiar/uncommon reflected phases were observed in the wavefield.The ~505 km long profile was realized in southern Ukraine in 2009, using 13 shot points and 230 recording stations. Double PMP phases with a different reduced time (7.5–11 s) and a different apparent velocity, intersecting each other, are observed in the seismic wavefield. This is the most striking feature of the data. They are interpreted as reflections from strongly dipping Moho segments with an opposite dip. Two steps were used for the modelling. In the previous work by Starostenko et al. (2013), the trial-and-error forward model based on refracted and reflected phases (SEIS83 code) was published. The interesting feature is the high-amplitude (8–17 km) variability of the Moho depth in the form of downward and upward bends. This model is compared with results from other seismic inversion methods: the first arrivals tomography package FAST based on first arrivals; the JIVE3D code, which can also use later refracted arrivals and reflections; and the forward and inversion code RAYINVR using both refracted and reflected phases. Modelling with all the codes tested showed substantial variability of the Moho depth along the DOBRE-4 profile. However, SEIS83 and RAYINVR packages seem to give the most coincident results.  相似文献   

19.
在南海东北部东沙环礁附近,内孤立波被大量地观测报道.在该地区内孤立波的传播和演化过程仍然存在许多待解决的问题.利用改进的地震海洋学处理方法对2009年夏的一段海洋勘探地震测线进行了重新处理,获得了50 m水深之下的水层反射图像,发现了包含8个内孤立波的下沉型内孤立波包.遥感仪器中分辨率成像光谱仪(MODIS)图像在该段地震测量的3 h内,捕捉到同一个内孤立波包,经处理分析,获得前5个内孤立波的清晰图像.本文采用了两种方法计算内孤立波相速度,方法一是利用不同的叠前共偏移距道集剖面估算内孤立波的视相速度,并根据MODIS图像上内孤立波的传播方向对其进行校正;方法二是利用地震与MODIS图像联测直接获得传播相速度.将这两种方法得到的相速度分别进行对比,发现它们在数值大体一致.地震海洋学剖面可直接获得内孤立波包中8个内孤立波的特征参数,包括振幅、视半高宽和视波间距.该内孤立波包的最大振幅为117 m,最大视半高宽为1020 m,最大视波间距为4100 m.由于地震采集船和内孤立波之间存在类多普勒效应,且二者前进方向存在夹角,所以利用地震与MODIS图像联测得到的传播相速度,结合MODIS图像所...  相似文献   

20.
—?We present an earthquake location algorithm, the Broadband Waveform Regional Earthquake Location Program (BW_RELP), which utilizes phase onset times and wave azimuths recorded by three-component broadband seismic stations and an adaptive migrating grid search algorithm to find the global minimum in an arbitrary normed misfit parameter. The performance of BW_RELP is demonstrated using regional (300–800?km distant) broadband recordings to locate events in the 1995 Ridgecrest, California earthquake sequence. The purpose of this study is to introduce the BW_RELP algorithm in detail and to expand on the previous paper by Deger et?al. (BSSA, 88, 1353–1362, 1998), using one Berkeley Digital Seismic Network (BDSN) station (YBH) and two USNSN stations (ELK and MNV) which span 300–800?km in distance and 55 degrees in azimuth, to further investigate the capability of a sparse broadband network of three-component stations at monitoring a region located outside of the network, as will be the case in the monitoring of the Comprehensive Test-Ban-Treaty (CTBT) for low magnitude seismic events. We assess the capability of this sparse three-station broadband network and we compare locations estimated from phase onset time and wave azimuth measurements to a ground-truth catalog of high-quality earthquake locations derived from data recorded by the Southern California Seismic Network (SCSN). The results indicate that in the regional distance range it is possible, when an appropriate calibration event is available, to obtain absolute event locations to within 18?km as is prescribed by the CTBT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号