首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
ENSO and the natural variability in the flow of tropical rivers   总被引:1,自引:0,他引:1  
This paper examines the relationship between the annual discharges of the Amazon, Congo, Paran á, and Nile rivers and the sea surface temperature (SST) anomalies of the eastern and central equatorial Pacific Ocean, an index of El Niño-Southern Oscillation (ENSO). Since river systems are comprehensive integrators of rainfall over large areas, accurate characterization of the flow regimes in major rivers will increase our understanding of large-scale global atmospheric dynamics. Results of this study reveal that the annual discharges of two large equatorial tropical rivers, the Amazon and the Congo, are weakly and negatively correlated with the equatorial Pacific SST anomalies with 10% of the variance in annual discharge explained by ENSO. Two smaller subtropical rivers, the Nile and the Paraná, show a correlation that is stronger by about a factor of 2. The Nile discharge is negatively correlated with the SST anomaly, whereas the Paraná river discharge shows a positive relation. The tendency for reduced rainfall/discharge over large tropical convection zones in the ENSO warm phase is attributed to global scale subsidence associated with major upwelling in the eastern Pacific Ocean.  相似文献   

2.
The foF2 data obtained at Alma-Ata and Observatorio Del Ebro during the winter/spring of 2003–2004 are analyzed to compare and investigate the upper ionosphere variability at the two selected sites. The geomagnetic activity and the middle stratosphere dynamics, involving planetary wave (PW) activity, are analyzed for understanding the physical conditions and processes that can explain the observed ionospheric variability. By applying the same method of wavelet analysis to the data sets and doing a direct comparison of the results, two types of foF2 disturbances were found. The first type is 2–7-day oscillations, which appeared during periods of increased geomagnetic activity. The second type is oscillations arising from PW activity in the lower atmosphere. These consist of (1) 6–11-day oscillations arising from PW activity in lower atmospheric regions developed during the final stratosphere warming and indicating the timing of the transition from the winter to the summer circulation and (2) 9–13-day and 8–10-day oscillations mostly during the quiet level of geomagnetic activity, indicating a likely close relation with those in the geopotential height at the 1 hPa level for westward-propagating waves at 40°N, which strengthened during stratosphere warming events in January 2004. The time delay of the oscillations in the ΔfoF2 with respect to those in the geopotential height is about 10 days and it seems that the assumed ionosphere response can occur under weakened eastward zonal wind or relatively weak westward zonal wind (V<30 m s−1).  相似文献   

3.
Abstract

It is known that the El Niño Southern Oscillation (ENSO) phenomenon induces marked climate variability across many parts of the world. However, in seeking useful relationships between ENSO and climate, several indices are available. In addition to the choice of index, previous studies assessing ENSO effects have employed a range of different methods to classify periods as El Niño, La Niña or Neutral. It is therefore clear that significant subjectivity exists in the adoption of ENSO classification schemes. In this study, several ENSO classification methods are applied to a range of ENSO indices. Each method-index combination is investigated to determine which provides the strongest relationship with rainfall and runoff in the Williams River catchment, New South Wales, Australia. The results demonstrate substantial differences between the methods and indices. The Multivariate ENSO Index (or MEI) is found to provide the best classification irrespective of method. The potential for forecasting ENSO-related effects on rainfall, runoff and river abstractions is then investigated. A “rise rule” to account for dynamic ENSO trends is also assessed. Strong relationships were found to exist with runoff (rainfall) up to nine (eight) months in advance of the Summer/autumn period. Implications for improved forecasting of potential river abstractions are apparent.  相似文献   

4.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   

5.
Abstract

A connection between El Niño Southern Oscillation (ENSO) and weather phenomena in eastern Australia has been recognized for several decades. However, little work has been devoted to addressing how this correlation affects hydrological system behaviour within regional-scale catchments. In this study, spatially distributed ENSO effects are evaluated in terms of monthly rainfall, evaporation, streamflow and runoff characteristics for a 1300 km2 catchment. The catchment is located in southeastern Australia where previous studies have indicated only modest ENSO influences on rainfall variability. Spatial and temporal analysis indicates that strongest ENSO-induced rainfall variability occurs during summer months. Additionally, the strength of the relationship is variable in space indicating that topographic controls may affect ENSO influences on rainfall totals and intensities. However, analysis of runoff shows substantially magnified ENSO-induced variability in comparison to the induced variability in rainfall. This may be attributable to the nonlinearity of runoff generation. Differences in antecedent moisture storage conditions will exist but may also be enhanced by complementary ENSO influences on daily rainfall intensities and mean monthly evaporation and temperature totals. The degree of the nonlinearity displayed by the hydrometeorological processes presented demonstrates that the significance of ENSO forecasts for surface water resource management should be assessed with direct regard to streamflow generation rather than on the basis of rainfall totals alone.  相似文献   

6.
Introduction The Yunnan region is located on the east margin of the collision zone between the Indian and Eurasian plates; it belongs to the south section of the N-S Seismic Belt of China and is the junc-ture of the Yangtze metaplatform, Songpan-Garz?fold system, Sanjiang fold system and South China fold system. This region has complex tectonic movements, crisscross faults and frequently occurring strong earthquakes, and hence it is one of the regions with the strongest earthquake ac-tivi…  相似文献   

7.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
2011年3月11日日本东太平洋海域发生Mw9.0级地震,造成了严重的灾害损失,地震诱发了海啸,海啸灾害最终导致核泄漏事件.本文初步收集整理了日本强震动观测网获得的强震动记录,简要进行强震动记录的特征分析,并完成典型记录的频谱特征计算,为进一步开展全面深入研究地震动特征提供参考.  相似文献   

9.
Abstract

Soil water content (θ) and saturated hydraulic conductivity (Ks) vary in space. The objective of this study was to examine the effects of initial soil water content (θi) and Ks variability on runoff simulations using the LImburg Soil Erosion Model (LISEM) in a small watershed in the Chinese Loess Plateau, based on model parameters derived from intensive measurements. The results showed that the total discharge (TD) and peak discharge (PD) were underestimated when the variability of θi and Ks was partially considered or completely ignored compared with those when the variability was fully considered. Time to peak (TP) was less affected by the spatial variability compared to TD and PD. Except for TP in some cases, significant differences were found in all hydrological variables (TD, PD and TP) between the cases in which spatial variability of θi or Ks was fully considered and those in which spatial variability was partially considered or completely ignored. Furthermore, runoff simulations were affected more strongly by Ks variability than by θi variability. The degree of spatial variability influences on runoff simulations was related to the rainfall pattern and θi. Greater rainfall depth and instantaneous rainfall intensity corresponded to a smaller influence of the spatial variability. Stronger effects of the θi variability on runoff simulation were found in wetter soils, while stronger effects of the Ks variability were found in drier soils. For accurate runoff simulation, the θi variability can be completely ignored in cases of a 1-h duration storm with a return period greater than 10 years, while Ks variability should be fully considered even in the case of a 1-h duration storm with a return period of 20 years.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   

10.
This paper presents an input and system identification technique for a soil–structure interaction system using earthquake response data. Identification is carried out on the Hualien large‐scale seismic test structure, which was built in Taiwan for international joint research. The identified quantities are the input ground acceleration as well as the shear wave velocities of the near‐field soil regions and Young's moduli of the shell sections of the structure. The earthquake response analysis on the soil–structure interaction system is carried out using the finite element method incorporating the infinite element formulation for the unbounded layered soil medium and the substructured wave input technique. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the earthquake responses measured at several points of the structure, so that the information on the input motion may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated earthquake responses using the identified parameters and input ground motion show excellent agreement with the measured responses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Shang Gao  Zheng N. Fang 《水文研究》2019,33(21):2729-2744
A synthetic storm generator—Dynamic Moving Storm (DMS)—is developed in this study to represent spatio‐temporal variabilities of rainfall and storm movement in synthetic storms. Using an urban watershed as the testbed, the authors investigate the hydrologic responses to the DMS parameters and their interactions. In order to reveal the complex nature of rainfall–run‐off processes, previously simplified assumptions are relaxed in this study regarding (a) temporal variability of rainfall intensity and (b) time‐invariant flow velocity in channel routing. The results of this study demonstrate the significant contribution of storm moving velocity to the variation of peak discharge based on a global sensitivity analysis. Furthermore, a pairwise sensitivity analysis is conducted to elucidate not only the patterns in individual contributions from parameters to hydrologic responses but also their interactions with storm moving velocity. The intricacies of peak discharges resulting from sensitivity analyses are then dissected into independent hydrologic metrics, that is, run‐off volume and standard deviation of run‐off timings, for deeper insights. It is confirmed that peak discharge is increased when storms travel downstream along the main channel at the speed that corresponds to a temporal superposition of run‐off. Spatial concentration of catchment rainfall is found to be a critical linkage through which characteristics of moving storms affect peak discharges. In addition, altering peak timing of rainfall intensity in conjunction with storm movement results in varied storm core locations in the channel network, which further changes the flow attenuation effects from channel routing. For future directions, the DMS generator will be embedded in a stochastic modelling framework and applied in rainfall/flow frequency analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号