首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
介绍了近年来国外在研究压溶作用导致的变形岩石体积损失和变形过程中流体作用的主要成果。包括如下几方面:运用有限应变测量方法对压溶变形作用进行定量分析;不同变形域之间化学成分的分异,以及流体传质作用(masstransport)的规律;流体-岩石相互反应的显微构造、显微化学判据;运用稳定同位素体系研究流体、岩石反应的同位素平衡关系及变形变质过程中的水/岩比率。  相似文献   

2.
On the basis of field geology, three typical ductile shear zones in the southern part of the Tancheng-Lujiang fault belt have been chosen for a detailed study. Altogether ten samples of the tectonites have been collected for this study. The paper is focused on a comprehensive study of the tectonites in the medium-lower horizons of the ductile shear zones. The mineral compositions of the rocks are analyzed with EPMA and some typical whole-rock samples analyzed by chemical and ICP methods. Based on the comprehensive study of the characteristics of the deformation, the mineral assemblages and the changes of chemical composition of the bulk rocks, this paper presents a discussion on the relationship between the volume loss, the fluid flow and compositional changes during mylonitization of the ductile shear zones in this region. Our study shows that there are a large amount of fluids flowing through the shear zones during the process of mylonization, accompanied by the loss of rock volume and migration of el  相似文献   

3.
In orogenic systems, thrust faults play a major role in stacking different tectonic units and may act as conduits for the expulsion of large amounts of fluid of different origins (metamorphic, diagenetic, meteoric). This study focuses on the Monte Perdido thrust unit emplaced in the Paleogene Jaca thrust-sheet-top basin, in the SW-central Pyrenees. We aim to decipher the mechanisms and P-T conditions of deformation in fault zones and characterize the related fluid involvement, through combined microstructural, geochemical and microthermometry analyses. Two thrust faults cutting platform limestones, marls and siliciclastic turbidites of the lower part of the basin-fill (Paleocene–lower Eocene) have been studied. The fault zones are characterized by metre-thick shear zones with highly deformed, foliated clay-rich sediments. Foliation is underlined by preferentially oriented phyllosilicates. Several generations of shear and extension calcite, quartz and chlorite-bearing veins attest to fluid-rock interactions during a multi-stage deformation. Microstructural observations and stable isotope analyses on calcite from veins and host sediments suggest that deformation was aseismic and dominated by diffusive mass transfer from pressure solution sites along cleavage and stylolites to the precipitation sites in veins, with mineralizing fluids in equilibrium with the host sediments. Our results suggest an essentially closed hydrologic system, and imply the absence of significant fluid flow along the studied fault zones. Microthermometric study on fluid inclusions present in calcite and quartz veins, and calcite-quartz oxygen isotopic fractionation determined for the first generation shear veins, allow a geothermal gradient of 34 °C/km to be estimated. Analytical results demonstrate an evolution of the fault zones in three stages. The first stage was related to the emplacement of the Monte Perdido thrust unit during the middle Eocene at a temperature of ~208 °C and a burial depth of ~5.7 km. The second stage corresponds to a fault reactivation at a temperature of ~240 °C and a burial depth of ~6.5 km. The latter deformation may have been related to folding of the Monte Perdido thrust unit during the emplacement of the underlying Gavarnie thrust unit during the late Eocene–early Oligocene, with deeper burial resulting from aggradation of the thrust-sheet-top basin-fill. The last event corresponds to the formation of a dilatant vein system likely related to the exhumation of the massif.  相似文献   

4.
5.
Abstract Microstructural and chemical analysis of plagioclase in 20 superficially similar amphibolite facies ductile shear zones in metagabbors and amphibolites of the Ivrea Zone in Italy reveals significant differences in An and Ba contents. Plagioclase, which was deformed at P-T conditions lower than those of the wall rocks, occurs in the following four different microstructural situations with different chemical compositions: (i) relatively undeformed porphyroclasts, (ii) dynamically recrystallized grains and subgrains rimming the porphyroclasts, (iii) infill of microcracks cross-cutting the porphyroclasts and (iv) fine-grained recrystallized grains in the matrix of the shear zones. The differences in the An and Ba contents are caused by partial chemical equilibration of plagioclase in the shear zones during and partly after deformation. Changes in An and Ba contents were caused by fluid-assisted grain-boundary migration recrystallization, as well as by solid-state diffusion, while fluid activity was high. The relation between the composition and microstructures of the plagioclase in the shear zones indicates that in the different shear zones, fluids ceased to be active during different stages in the late shear zone deformation history.
The interpretation of the variations in composition and microstructures reveals that only grains that developed by grain-boundary migration recrystallization and that are not adjacent to porphyroclasts reflect P-T conditions during the dominant shear-zone deformation.  相似文献   

6.
The nature of synmetamorphic fluids and their flow is examined in the granulitic lower crust of Madagascar, part of a Precambrian crustal-scale network of vertical ductile shear zones. Based on three independent data sets - field and satellite mapping, C-, O- and H-isotope geochemistry and gravimetry - this crust is divided into three zones: outside of shear zones, minor shear zones (<140 km long and 7 km wide), and major shear zones (>350 km long and 20–35 km wide). The major shear zones are rooted in and are controlled by the mantle. They tapped mantle-derived CO2 with carbon fluxes of the same order of magnitude as oceanic ridge degassing. One major shear zone shows abundant phlogopite-diopside-apatite-calcite mineralizations (a well known paragenesis in mantle metasomatism) due to mantle-fluid infiltration and their interaction with the crust. Carbonatitic magmas possibly collected in the major shear zones at the base of the crust and may be the source for CO2 upwellings as well as other metasomatic agents. Small-scale minor shear zones were controlled by crustal deformation processes and focused crustally-derived H2O-rich fluids. Pervasive fluid circulation was restricted to the vicinity (< 100 m) of synmetamorphic plutons. Fluid absent conditions dominate everywhere else. Mantle-CO2 flushing is not required for granulite genesis but is a consequence of the high associated heat flux. Fluid transfer at the mantle/crust interface is controlled by the tectonic setting and the associated geothermal gradient. The C- and O- isotope systematics of metamorphosed carbonates sampled on a regional scale within a known petrological and structural framework are shown to be of great help to identify the distribution of major fluid-rock interaction processes associated with plate tectonics.  相似文献   

7.
During emplacement and cooling, the layered mafic–ultramafic Kettara intrusion (Jebilet, Morocco) underwent coeval effects of deformation and pervasive fluid infiltration at the scale of the intrusion. In the zones not affected by deformation, primary minerals (olivine, plagioclase, clinopyroxene) were partially or totally altered into Ca‐amphibole, Mg‐chlorite and CaAl‐silicates. In the zones of active deformation (centimetre‐scale shear zones), focused fluid flow transformed the metacumulates (peridotites and leucogabbros) into ultramylonites where insoluble primary minerals (ilmenite, spinel and apatite) persist in a Ca‐amphibole‐rich matrix. Mass‐balance calculations indicate that shearing was accompanied by up to 200% volume gain; the ultramylonites being enriched in Si, Ca, Mg, and Fe, and depleted in Na and K. The gains in Ca and Mg and losses in Na and K are consistent with fluid flow in the direction of increasing temperature. When the intrusion had cooled to temperatures prevailing in the country rock (lower greenschist facies), deformation was still active along the shear zones. Intense intragranular fracturing in the shear zone walls and subsequent fluid infiltration allowed shear zones to thicken to metre‐scale shear zones with time. The inner parts of the shear zones were transformed into chlorite‐rich ultramylonites. In the shear zone walls, muscovite crystallized at the expense of Ca–Al silicates, while calcite and quartz were deposited in ‘en echelon’ veins. Mass‐balance calculations indicate that formation of the chlorite‐rich shear zones was accompanied by up to 60% volume loss near the centre of the shear zones; the ultramylonites being enriched in Fe and depleted in Si, Ca, Mg, Na and K while the shear zones walls are enriched in K and depleted in Ca and Si. The alteration observed in, and adjacent to the chlorite shear zones is consistent with an upward migrating regional fluid which flows laterally into the shear zone walls. Isotopic (Sr, O) signatures inferred for the fluid indicate it was deeply equilibrated with host lithologies.  相似文献   

8.
流体一超镁铁质岩相互作用与硬玉岩的形成   总被引:1,自引:0,他引:1  
祁敏  向华  钟增球  周汉文 《地球科学》2011,36(3):511-520
俯冲带中流体与岩石相互作用以及流体循环一直是地质学家关注的焦点之一.硬玉岩(翡翠)作为高档宝玉石材料,其成因一直备受关注.硬玉岩产于与俯冲带有关的蛇纹石化超镁铁质岩中,是俯冲带中流体与超镁铁岩相互作用的特殊产物.岩石组合、岩相学、显微结构及矿物化学特征表明:橄榄岩与流体的作用可以分为5个阶段,分别为蛇纹石化→(绿泥石、...  相似文献   

9.
以南天山中段萨恨托亥-大山口成矿带内控矿韧性剪切带为例,对韧性剪切带的金成矿作用进行了初步探讨.通过对地质体的构造变形特点、变形演化过程的分析表明,韧性剪切带的构造属性控制了金矿的产状及规模,金矿化阶段与韧性剪切带的变形演化过程密切相关.矿化类型、矿化强度及矿化方式受韧性剪切带发展阶段制约,剪切带内物质组分迁移变化揭示出韧性剪切带与金在剪切带内的迁移富集、沉淀成矿的内在联系.韧性剪切带成矿作用是南天山成矿带中段重要的金矿成矿作用.  相似文献   

10.
刘贵 《地质力学学报》2020,26(2):175-186
构造变形与流体联合控制成矿作用的机制是矿床学界关注的热点问题之一。作为大陆岩石圈中的应变局部化带,剪切带中一般都渗透着大量流体,流体与岩石的相互作用及其化学效应和物理效应,导致了矿物化学不平衡和组分的迁移,引起岩石化学成分重新调整。文章通过对韧性剪切带内的流体作用、剪切带内的成分与体积变化、剪切变形与成矿模拟实验总结,讨论了剪切变形过程中的力学-化学作用、剪切构造应力和流体在构造成岩成矿过程中的行为。因此,要加强构造应力对温度、岩石物理性质、地球化学相平衡和水岩体系的相关参量方面影响的综合研究。   相似文献   

11.
The effects of high-strain deformation and fluid infiltration during Alpine eclogite facies metamorphism have been studied across ductile shear zones in relatively undeformed metagranitoids at Monte Mucrone (Sesia Zone, Western Alps, Italy). Microfabrics together with bulk rock and stable isotope data indicate that the mineralogical and chemical variations are related to the degree of deformation, rather than to changes in P-T conditions or tectonic position. Transformation of meta-quartz diorite to recrystallized eclogitic mylonites involved the breakdown of biotite and plagioclase and required the influx of H2O. Bulk-rock geochemical data show that ductile deformation to form eclogitic mylonites involved an increase in volume with a weight percent gain in H2O and Si and variable loss of K, Na, Ca and Al. δ18O changes systematically across ductile shear zones into the undeformed country rocks. Constant values in shear zone centres indicate advection parallel to the shear zone and within 10 cm of the mylonites. A dominant component of diffusive oxygen exchange perpendicular to the shear zones produced isotopic fronts, evident from a gradual increase in δ18O values to the reference values of the country rocks. The degree of isotopic shift within the shear zones reflects increasing deformation and degree of reaction progress. Multiple phases of Alpine deformation and mineral growth are recognized in the Monte Mucrone metagranitoids, and in some cases, eclogite facies shear zones were reactivated under greenschist facies conditions. The results of this study suggest that high-strain deformation provided pathways for both synkinematic and post-kinematic metamorphic fluids which were necessary for complete reactions. Relict igneous fabrics, as well as the presence of corona textures around biotite and pseudomorphs after primary igneous plagioclase in the least deformed rocks, indicate a paucity of hydrous fluids and support the conclusion that fluid movement was channelled rather than pervasive.  相似文献   

12.
陈仁旭  郑永飞  龚冰 《岩石学报》2011,27(2):451-468
对超高压变质岩中含水矿物和名义上无水矿物的地球化学研究,极大地深化了我们对大陆碰撞带地壳俯冲和折返过程中流体体制的认识。就流体体制和化学地球动力学来说,有关研究在大别-苏鲁造山带进行的最为详细,因此已经成为研究大陆俯冲带变质的典型地区。本文以大别-苏鲁造山带为对象,从矿物水含量的角度,结合稳定同位素论述了大陆俯冲带流体活动。超高压变质岩中名义上无水矿物含有大量的水,以结构羟基和分子水形式存在。名义上无水矿物中结构羟基和分子水出溶与含水矿物分解共同构成了折返过程中退变质流体的主要来源。名义上无水矿物所释放的水以富集轻的氢氧同位素为特征,而含水矿物分解则提供了富集D的流体来源。折返过程中,名义上无水矿物降压脱水存在亏损D的分子水的优先丢失和不同形式水之间的相互转化。不同岩性的水含量差异导致了它们在折返过程中不同的流体活动行为。大陆板块俯冲和折返过程中,在不同矿物、不同岩性以及板片不同部位之间存在水的再分配;板片的一部分作为富水流体的源,而另一部分可能作为汇。  相似文献   

13.
Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in Palenyi Island in the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10–11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineralogical and chemical composition. The closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to the values obtained with mineralogical geothermometers (Grt-Opx and Grt-Bt) and correspond to the high-temperature granulite facies (860–900°C). Identified systematic variations in the δ18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in δ18O cannot be explained by the primary isotopic heterogeneity of the protolith. The model calculations of the extent and trend of the δ18O variations in minerals suggest that the only mechanism able to generate the zoning was fluid-rock interaction at various integral fluid/rock ratios in discrete zones. This demonstrates that a focused fluid flux could occur in lower crustal shear zones. The preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.  相似文献   

14.
Combined metamorphic, stable-isotope and structural studies from the High Himalayan Crystalline sequence in the Langtang Valley of north-central Nepal reveal a strong positive correlation between distance above the base of the section (the Main Central Thrust), the amount of melt material and evidence of prolonged fluid and deformation histories, thus suggesting that these processes are strongly interdependent. Kyanite-grade rocks at the base of the section are unmelted and have undergone little syn- or post-metamorphic internal deformation and little prograde or retrograde fluid-rock interaction. By contrast sillimanite-grade rocks higher in the section contain progressively larger volumes of melt, have suffered increasingly complex syn- and post-metamorphic deformation and show increasing evidence for the presence of fluids. Although the factors that initiated these processes remain problematic, it is suggested that fluid distributions within the Langtang section have been passively controlled by the movement of melts. These melts may have provided a primary control on deformation during both the magmatic stage and, subsequently, through the exsolution of exsolved aqueous fluids.  相似文献   

15.
The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary in- clusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the "original" peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL) techniques combined with trace element analysis of quartz (EPMA, LA- [CPMS) have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and A1, low- temperature re-equilibrated quartz typically shows reduced trace element concentrations. The result- ing microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries), and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 ℃, i.e. the range of semi-brittle deformation (greenschist-facies) and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.  相似文献   

16.
利用ICP-MS和同位素质谱分析了大坪金矿含金石英脉中白钨矿的微量元素、稀土元素和Sm-Nd、Rb-Sr同位素组成,结果显示大坪白钨矿中富Sr、Ba,而亏损Mo、Bi、Sn、Nb、Ta等,指示原始成矿流体与岩浆的结晶分异作用无关,并非前人普遍认为的岩浆水和大气降水的混合流体;样品的REE球粒陨石标准化配分曲线为高度一致的右倾和MREE富集型,Eu出现正异常,表明白钨矿与流体之间REE元素发生了强烈分异,白钨矿中REE的配分行为主要表现为REE^3+与Na^+成化合价补偿形式替代Ca^2+选择性进入白钨矿晶格中,成矿流体是相对封闭的高温、富Na^+的还原性热液体系;Sr-Nd同位素组成显示本区原始成矿流体主要来自下地壳,但不排除有幔源物质加入.原始成矿流体的形成与区域性剪切带的活动有关,韧性剪切作用导致下地壳富CO2流体上升,并与闪长岩发生强烈的水岩反应,而剪切带中脆性断裂的形成是成矿流体迁移、集中、沸腾和矿质沉淀的触发因素.  相似文献   

17.
Jochen Kolb   《Tectonophysics》2008,446(1-4):1-15
The fabric, mineralogy, geochemistry, and stable isotope systematics of auriferous shear zones in various hydrothermal gold deposits were studied in order to discuss the role of fluids in rock deformation at temperatures between 500 °C and 700 °C. The strong hydrothermal alteration and gold mineralization indicates that effective permeability development goes ahead with high-temperature rock deformation. The economic gold enrichment is often hosted by breccias and quartz veins in the ductile shear zones, which either formed at fast strain rates or by low strain continuous deformation at slow strain rates. Both processes require (1) a close-to lithostatic to supralithostatic fluid pressure and/or (2) a strong rheology contrast of the deformed lithologies that is often developed during progressive hydrothermal alteration. Compartments of high fluid pressure are sealed from the rest of the shear zones by high-temperature deformation mechanisms, e.g. intracrystalline plasticity and diffusion creep, and compaction. In contrast, in mylonites with heterogeneous crystal plastic and brittle deformation mechanisms for the various minerals, an interconnected network of a grain-scale porosity forms an effective fluid conduit, which hampers fluid pressure build-up and the formation of veins.The auriferous shear zones of the various gold mines represent fluid conduits in the deeper crust, 100 m along strike and up to 1000 m down-dip. The hydrothermal fluids infiltrated may be responsible for low magnitude earthquakes in the Earth's lower crust, which otherwise deforms viscously.  相似文献   

18.
The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.  相似文献   

19.
刘德良  杨晓勇 《岩石学报》1996,12(4):573-588
本文对郯庐断裂带南段主干断裂典型的韧性剪切带进行了系统的剖析。从糜棱岩塑性变形的亚颗粒化、动态重结晶和矿物成分特征及岩石组分迁移变化等入手进行系统的研究工作,计算了岩石形成的温度、压力和流动应力和流变速率参数;模拟计算了岩石在剪切变形作用下的体积亏损及组分迁移的量值,探讨了变形-变质及流体的相关关系  相似文献   

20.
We describe amphibolite-facies shear zones affecting an orthogneiss from the Armorican Hercynian belt (Ile d’Yeu, western France). The deformation pattern is consistent with top-to-the-South thrusting followed by E–W extension, as documented elsewhere in the region. Shearing was accompanied by channelled fluid flow that transformed the orthogneiss into a peraluminous micaschist. Structural and mineralogical data indicate rather early strain localization. Then, temperature increase associated with crustal thickening favoured more distributed deformations marked by shear zone stretching and the development of a HT regional foliation. Chemical analyses made across five shear zones show mass transfers that mainly implied losses in Ca and Na, and gains in H2O, Mg, and K. Most results indicate constant volume transformation, but some suggest records of either gains or losses of volume (between +20% and −30%). This might reflect variable records of fluid-rock interactions according to the timing of initiation and subsequent evolution of individual shear zones, early thrusting stages being marked by up-temperature flow, and late thrusting stages by down-temperature flow. δ18O analyses suggest that fluids experienced significant isotopic exchange with orthogneisses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号