首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) Skempton, A. W. 1970. “The consolidation of clays by gravitational compaction”. In Q. J. Geol. Soc 373411.  [Google Scholar] for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990) Burland, J. B. 1990. On the compressibility and shear strength of natural clays. Gèotechnique, 40: 329378. [Crossref], [Web of Science ®] [Google Scholar]. When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8–1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

2.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990). When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8-1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

3.
Remolded Undrained Strength of Soils   总被引:12,自引:6,他引:12  
1 .IntroductionManyresearchershaveillustratedthatthesoftmarineclayeysoilsgenerallyshowtheoverconsoli dationratiobeinglargerthanunity ,althoughthesitegeologyindicatesnormalconsolidation (e .g .,Zhangetal.,1 995;HongandTsuchida ,1 999) .Burland (1 990 )illustratedthatthem…  相似文献   

4.
Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

5.
ABSTRACT

Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

6.
1 .IntroductionCoastalstructuresoftenencountersettlementandstabilityproblemsofsoftmarinefoundation (Liuetal.,1 999;Zhouetal.,2 0 0 0 ;Liuetal.,2 0 0 3) .Manyresearchershaveillustratedthatnaturalmarineclaysaregenerallysubjectedtotheeffectsofsoilstructureduringtheirdepositionalandpost depositionalprocesses (Zhangetal.,1 995;Hongetal.,2 0 0 3a ;2 0 0 3b) .Thesoilstructureofnat uralmarineclaysiseasilydamagedduringsamplingandhandlingbecausenaturalmarineclaysgeneral lyhavehighwatercontentandlowsti…  相似文献   

7.
The present article discusses the stress–strain behavior and critical state parameters of the dredged Chennai marine clay stabilized with low cement content (2.5–10%). A series of one-dimensional consolidation tests and consolidated undrained tri-axial tests are performed on the cement stabilized dredged Chennai marine clay to evaluate the critical state parameters (λ, κ, M, Г, N) for varying cement contents and curing days. The results show that the slope of the critical state line M increases with an increase in the cement content. The parameter λ for the treated marine clay increases up to a cement content of 7.5% followed by a reduction. The parameter κ decreases with the addition of cement content. Finally, empirical formulations are proposed to predict the critical state parameters as the functions of the cement's contents and curing days.  相似文献   

8.
On Physical and Mechanical Behavior of Natural Marine Intermediate Deposits   总被引:4,自引:1,他引:4  
Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the nattwal marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same miles of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consohdated compression shear tests with simulated insitu confined pressure give results much better than those of uncomfined compression shear tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号