首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this case study, silica concentration, oxygen and strontium isotopes of water samples were used to study surface water–groundwater interaction at the Xin’an karst water system. The silica concentration in rain water is commonly less than 1 mg/l. In the areas around the south tributary of the Zhuozhang River, silica concentrations in the groundwater in Quaternary aquifers range between 4.04 and 7.66 mg/l while that of the surface water varies from 1.49 to 6.9 mg/l. Silica concentrations of most surface water samples increase with TDS, indicating the effect of groundwater recharge on river water chemistry. On the contour map of silica concentration of groundwater in Quaternary aquifers, samples located close to surface water often have lower silica concentrations as a result of surface water recharge. Both overland flow and surface water have impact on karst water according to our hydrogeochemical study of stable oxygen isotope, Sr isotope and strontium contents. Calculation results of three end member mixing model show that the contribution of karst water, surface water and overland flow water is 45, 28 and 27%, respectively.  相似文献   

2.
The Tongshan copper deposit in Anhui Province is a typical mid-sized skarn and porphyry type deposit in the Anqing–Guichi district along the Middle–Lower Yangtze River Valley, eastern China. The Tongshan intrusion is closely related to this mineralization. The intrusion mainly comprises rocks that are quartz diorite porphyry, quartz monzonite porphyry, and granodiorite porphyry. Plagioclase in these rocks is mostly andesine (An = 31.0–42.9), along with minor oligoclase. Biotite is magnesium-rich [Mg/(Mg + Fe) = 0.52–0.67] and aluminum-poor (Al2O3 = 12.32–14.09 wt.%), and can be classified as magnesio-biotite. Hornblende is TiO2-poor (<1.96 wt.%) and magnesium-rich [Mg/(Mg + Fe) > 0.60], and is magnesio-hornblende or edenite. The SHRIMP zircon U–Pb age of the quartz monzonite porphyry is 145.1 ± 1.2 Ma, which corresponds to the middle Yanshanian period. Whole-rock geochemical results show that the rocks are silica-rich (SiO2 = 60.23–66.23 wt.%) and alkali-rich (K2O + Na2O = 4.97–8.72 wt.%), and low in calcium (CaO = 2.61–5.66 wt.%). Trace element results show enrichments in large ion lithophile element (e.g., K, Rb, and Ba) and depletions in some high field strength elements (e.g., Nb, Ta, P, and Ti). The total rare earth element (REE) content of the rocks is low (ΣREE < 200 μg/g), and they exhibit light REE enrichment [(La/Yb)N > 10] and small positive Eu anomalies (average δEu = 1.16). These mineralogical, geochronological, and geochemical results show that the intrusion has a mixed crust–mantle source. The Tongshan intrusion was formed by multiple emplacements of crustally contaminated basaltic magma generated by varying degrees of partial melting of enriched lithospheric mantle and lower crust. Hornblende thermobarometry yielded magmatic crystallization temperatures of 652–788 °C and an average crystallization pressure of 1.4 kbar, which corresponds to a depth of approx. 4.7 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 735–775 °C and 0.6 kbar (depth 2.1 km), respectively. The parental magma had a high oxygen fugacity and was produced in a volcanic arc setting related to subduction of the paleo-Pacific plate.  相似文献   

3.
Taihu Basin is one of the most developed and industrialized regions in China. In the last two decades, rapid development of economy as well as an increase in population has resulted in an increase of pollutants produced and discharged into rivers and lakes. Much more attention has been paid on the serious water pollution problems due to high frequency of algal blooming. The dataset, obtained during the period 2001–2002 from the Water Resources Protection Bureau of the Taihu Basin, consisted of eight physicochemical variables surveyed monthly at 22 sampling sites in the Taihu Basin, China. Principal component analysis (PCA) and cluster analysis (CA) were used to identify the characteristics of the surface water quality in the studied area. The temporal and spatial variations of water quality were also evaluated by using the fuzzy synthetic evaluation (FSE) method. PCA extracted the first two principal components (PCs), explaining 86.18% of the total variance of the raw data. Especially, PC1 (73.72%) had strong positive correlation with DO, and was negatively associated with CODMn, COD, BOD, NH4 +–N, TP and TN. PC2 (12.46%) was characterized by pH. CA showed that most sites were highly polluted by industrial and domestic wastewater which contributed significantly to PC1. The sites located in the west of Lake Taihu were influenced by farmland runoff which may contribute to nitrogen pollution of Lake Taihu, whereas the monitoring sites in the eastern of Lake Taihu demonstrated that urban residential subsistence and domestic wastewater are the major contaminants. FSE indicates that there is no obvious variance between 2001 and 2002 among most sites. Only several sites free from point-source pollution appear to exhibit good water quality through the studied period.  相似文献   

4.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

5.
THEJINLONGSHANGOLDOREBELTINZHEN’ANCOUN TY,SOUTHERNSHAANXIPROVINCE,ISLOCATEDINTHEWEST ERNQINLINGGOLDPROVINCE(NO.16INFIG.1;CHEN YANJINGETAL.,2004).ITWASDISCOVEREDINTHEDEVO NIANSTRATAINTHELATE1980S).ITSGEOLOGICALSETTING ANDMETALLOGENICEVOLUTIONARESIMILARTOT…  相似文献   

6.
The Piqiang–Selibuya Fault is the most significant fault in the NW Tarim Basin, China. It has attracted increasing attention because of the discovery of a series of oil (gas) fields in and around the fault zone. The structural characteristics and evolution of the Piqiang–Selibuya Fault remain controversial. Field geological surveys and seismic data interpretation reveal that the fault has experienced three stages of activity. The thicknesses of the Permian and Miocene strata on opposing sides of the fault are clearly different, and these reveal that the fault has experienced two stages of significant thrusting. The first stage took place at the end of the Triassic and was associated with the Qiangtang Block amalgamated to the south margin of Eurasia. The second stage occurred at the end of the Miocene and might have been caused by the northwards overthrusting of the Pamir. These two stages of thrusting led to the lower–middle Cambrian detachment layer in the eastern part of the Keping thrust belt being 2 km shallower than in the western part. Since the Pliocene, the southern Tien Shan orogenic belt has been reactivated and thrust towards the interior of the Tarim Basin, and a series of ENE–WSW-trending thrust sheets have formed in the Keping thrust belt. Because of the different depth of the detachment layer on the opposing sides of the Piqiang–Selibuya Fault, the number and spacing of thrust sheets formed to the east of the fault differ from those to the west. This dissimilar deformation led to the strike–slip displacement on the Piqiang–Selibuya Fault. The three stages of fault activity record three important tectonic events in the NW Tarim Basin. Qualitative analysis of this activity helps us better understand the influence of the far-field effect of the collisions that occurred on the southern margin of the Eurasia plate on the structural deformation of the NW Tarim Basin.  相似文献   

7.
Daily data of minimum and maximum temperature from 76 meteorological stations for 1960–2010 are used to detect the annual and seasonal variations of temperature extremes in the arid region, China. The Mann–Kendall test and Sen estimator are used to assess the significance of the trend and amount of change, respectively. Fifteen temperature indices are examined. The temperature extremes show patterns consistent with warming, with a large proportion of stations showing statistically significant trends. Warming trends in indices derived from daily minimum temperature are of greater magnitudes than those from maximum temperature, and stations along the Tianshan Mountains have larger trend magnitudes. The decreases in frequency for cold extremes mainly occur in summer and autumn, while warm extremes show significant increases in frequency in autumn and winter. For the arid region as a whole, the occurrence of cold nights and cold days has decreased by ?1.89 and ?0.89 days/decade, respectively, and warm nights and warm days has increased by 2.85 and 1.37 days/decade, respectively. The number of frost days and ice days exhibit significant decreasing trends at the rates of ?3.84 and ?2.07 days/decade. The threshold indices also show statistically significant increasing trends, with the extreme lowest temperatures faster than highest temperatures. The diurnal temperature range has decreased by 0.23 °C/decade, which is in accordance with the more rapid increases in minimum temperature than in maximum temperature. The results of this study will be useful for local human mitigation to alterations in water resources and ecological environment in the arid region of China due to the changes of temperature extremes.  相似文献   

8.
Mine water inrush is one of the main hazards in coal mining industry. The mechanism and the processes are complex. Investigation of the spatiotemporal development of the hydrological process could lead to a better understanding of mine water inrush and effective countermeasures. For this reason, we investigated spatial and temporal characteristics (i.e., the changes of flow rate, groundwater level, and water quality) during a water inrush event in China, which had a flow rate of 730 m3/h at maximum and 300m3/h under a steady condition. The result shows that the water inrush developed in several stages. A mathematical model of the dynamic change between the water table and the inrush flow rate was constructed. Based on this model, we found the relationship of highly conductive flow channels between some observation boreholes and the water inrush point. In addition, the recharge velocity of the highly conductive flow channels and the equivalent mean flow velocity of the whole mine were determined. A comprehensive analysis of geological, hydrodynamic, and crustal stress conditions was conducted to study the development of the water channel near the F13 fault and the nonlinear process from seepage stage to inrush stage. The result reveals the water inrush is likely caused by activation of faults under combined influences of high crustal stress and high hydraulic pressure.  相似文献   

9.
As one of the most fertile soils in China, phaeozem has been cultivated for about three hundred years and some soil physical-chemical characters have been changed, which would affect the agricultural development. In order to evaluate the quality of phaeoz…  相似文献   

10.
《International Geology Review》2012,54(14):1559-1575
The middle segment of the Yangtze River Deep Fault Belt, located in the foreland of the Dabie orogen, contains widely exposed volcanic–intrusive complexes that formed during two episodes of magmatism (post-collisional and post-orogenic), reflecting crust–mantle interactions during the Late Jurassic (J3) to Early Cretaceous (K1). This article summarizes research on the Mesozoic igneous suites and xenolith suites in the area along the Yangtze River. ‘Post-collisional magmatism’ occurred during lithospheric extension at ~145–130 Ma. Its beginning and end are marked by gabbroic xenoliths and pyroxene cumulates within intrusions at Tongling, and by alkali-rich magmatic rocks. The association includes peraluminous silicic rocks and metaluminous mafic–felsic igneous suites, ranging from medium-K to high-K calc-alkaline to shoshonitic compositions. Taking the Tongling region as an example, quartz monzodiorite yields a sensitive high resolution ion microprobe (SHRIMP) zircon U–Pb age of 139.5 ± 2.9 Ma, and granodiorite yields an age of 135.5 ± 4.4 Ma. These intrusive rocks contain 52.79–66.46 wt.% SiO2, 13.12–17.73 wt.% Al2O3, 1.37–4.62 wt.% MgO, 3.86–6.84 wt.% FeOT, and 4.71–7.87 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.62 to 1.20, and ANK values from 1.45 to 3.48. ‘Post-orogenic magmatism’ occurred during lithospheric delamination at ~130–120 Ma. The start of magmatism was marked by the formation of gabbro containing spinel lherzolite xenoliths in the Nanjing–Wuhu Basin (NWB), and its end was marked by the generation of feldspathoid phenocryst-bearing phonolite in the NWB and the Lujiang–Zongyang Basin (LZB), respectively. The association that formed during this episode ranges from alkaline to peralkaline. Taking the Niangniangshan Formation in the NWB as an example, the Nosite phonolite yields a whole-rock monomineral Rb–Sr isochron age of 120 ± 9 Ma, and contains 49.92–60.09 wt.% SiO2, 17.67–20.65 wt.% Al2O3, 0.08–2.45 wt.% MgO, 1.32–6.62 wt.% FeOT, and 9.24–13.92 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.72 to 1.24, and ANK values from 1.03 to 1.35.

The two magmatisms correspond to two episodes of crust–mantle interaction. The first involved intensive interaction between middle–lower crust and underplated basaltic magma derived from the upper mantle lithosphere, whereas the second involved minor interaction between the middle–lower crust and basaltic magma derived from the lower lithospheric mantle.  相似文献   

11.
Water inrush into coal mines from aquifers underlying coal seams often causes serious casualties and economic losses. The key to preventing the disaster is to discover a water inrush mechanism suitable for specific geological and hydrogeological conditions and apply reasonable control measures. A case of the Chensilou mine is studied in this paper. Complex geological and hydrogeological conditions, such as 12 aquifers in the floor and small distance between coal seam and aquifer, make the mining face in the synclinal basin have a great risk of water inrush. In addition, as an important way to prevent the disaster, grouting will aggravate the risk of water inrush from the floor. The slurry will drive groundwater in the limestone aquifers L8, even L7 and L6 along the horizontal (fracture zone in L11~L8) and vertical (Fs1 ~Fd1) water flow channel into the mining face and synclinal basin. A new water inrush mechanism driven by grouting is formed. In order to prevent this disaster, based on statistical law of hole deviation, the relative error of vertical depth and the angle between the borehole and the rock formation are obtained. Finally, an improved grouting method is proposed, which is useful to ensure the safe production of coal mine and reduce the cost of grouting.  相似文献   

12.
13.
In recent years, geoparks (a geoheritage effort to protect geological features) have been vigorously promoted in China and abroad. The evaluation of a geopark is important for geopark development. However, current evaluation methods focus on geoheritage and their values, and often ignore residents’ situations, even though community participation is essential to the sustainable development of geoparks. In this paper, the Mt. Huaying Grand Canyon Geological Park was selected as a study area to evaluate resident’s perceptions of the park. Perception impact factors were selected from the perspective of the park residents. Quantitative evaluation models, based on data from questionnaires, were created using the hierarchy process model and expert evaluation method. The results showed that the following factors influenced residents’ perceptions, listed from the most significant to the least: residents’ understanding of geoheritage, participation level in commercial activities, participation level in planning decisions, satisfaction level regarding benefit distribution and level of participation willingness. It was found that residents’ level of understanding of geoheritage and their participation level in planning decisions were the main reasons for poorer perceptions of geoheritage. The keys to improving residents’ perceptions of geoheritage are to change the management system, implement people-centered policies and to establish a government-led management mode that encourages community participation and involves private business contracts.  相似文献   

14.
Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang’an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway’s normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.  相似文献   

15.
Mercury as a toxic element poses environmental concerns, especially in historically Hg-mined districts. The Wanshan Hg mine located in the eastern part of Guizhou Province, southwestern China, ranks the largest Hg-producing district in China. Mining at Wanshan was initiated in 221 B.C., but ceased in 2001. Approximately 22000 tons of Hg, 6000 tons of cinnabar and large quantities of mine-wastes had been produced at Wanshan. Significant quantities of calcines, which were piled irregularly near the old mine processing sites and retorts, continue to impact the local environments in the Wanshan area. In this study, a regional contamination of mercury in surface waters collected from the Meizixi, Dashuixi, Huandao and Gaolouping rivers, whose upstreams or branches originate from the hilly karstic area and receive drainage arising from the calcines, was investigated by determining all Hg species in a base-flow and a flood-flow season. Reactive, dissolved, particulate, and total Hg concentrations in surface water varied from 0.60 to 400 ng/L, 11 to 430 ng/L, 1.4 to 9210 ng/L, and 15 to 9260 ng/L, respectively. Total methylmercury in water samples ranges from 0.31 to 25 ng/L. The concentrations of total Hg and particulate Hg in water samples collected during the flood season are higher than those in the base-flow season, whereas, the concentrations of dissolved and reactive Hg are lower with the peak values observed in water samples collected in the base-flow season. A strong positive correlation between total Hg and particulate Hg is noticed in the water samples collected from Hg-mined areas with the proportion higher than 80%.  相似文献   

16.
Despite a recent increase in the number of vulnerability analyses there has been relatively little discussion of vulnerability assessment of social–environment system, especially when they face multiple hazards. In this study, we developed an applicable and convenient method to assess vulnerability of social–environment system at a regional scale. Vulnerability is quantified by measuring three critical elements (i.e. hazards, sensitivity, and resilience) through some key variables. The results showed that vulnerability is high in Miaofeng Mountain in Mengtougou District, the hills of Pinggu County and the riparian zones of the lower courses of the Beiyun and Yongding Rivers; but low in the city of Beijing and the southwestern part of the Fangshan District. Areas of very high, high, medium, and low-vulnerability account for 6.19, 25.48, 33.06, and 35.27% of the total area, respectively. The degree of vulnerability decreases in a northwest direction in mountainous areas and declines from watercourses to riparian zones along a lateral direction in the plain. Some adaptive strategies are also proposed.  相似文献   

17.
18.
In this paper, a new methodology is developed for optimization of water and waste load allocation in reservoir–river systems considering the existing uncertainties in reservoir inflow, waste loads and water demands. A stochastic dynamic programming (SDP) model is used to optimize reservoir operation considering the inflow uncertainty, and another model called PSO-SA is developed and linked with the SDP model for optimizing water and waste load allocation in downstream river. In the PSO-SA model, a particle swarm optimization technique with a dynamic penalty function for handling the constraints is used to optimize water and waste load allocation policies. Also, a simulated annealing technique is utilized for determining the upper and lower bounds of constraints and objective function considering the existing uncertainties. As the proposed water and waste load allocation model has a considerable run-time, some powerful soft computing techniques, namely, Regression tree Induction (named M5P), fuzzy K-nearest neighbor, Bayesian network, support vector regression and an adaptive neuro-fuzzy inference system, are trained and validated using the results of the proposed methodology to develop real-time water and waste load allocation rules. To examine the efficiency and applicability of the methodology, it is applied to the Dez reservoir–river system in the south-western part of Iran.  相似文献   

19.
1 Introduction In recent years rapid economic developmentbadly needs energy resources. Exploration andexploitation of more kinds of energy resources shouldbe intensified to meet this need. According to presentliterature, oil/gas fields, coal fields as we…  相似文献   

20.
Metallogenic (ore) efficiency can be defined as the ratio of metal reserves to its total supply, and we expanded a typical efficiency-calculation model available at the single mineral scale to the regional scale. A new cell-based model was developed by analogy and by taking some other influences into account: i) a thicker sedimentary cover; ii) regional ore- and rock-controlling structures and their intersections; iii) the crustal heterogeneity unrelated and related to ores; and iv) metallic geochemical anomalies. Finally, a regional contour map of weighted efficiency, which is essential to metallogenic prediction, was obtained. It shows that the efficiency anomalies can provide a much better target area for ore-positioning than do metallic content anomalies, and greater ore efficiency may indicate the likelihood of occurrence of mineral deposits that are larger in size (reserves). Taking northwestern Zhejiang province as a case study, in which the geochemistry of Mesozoic porphyries plausibly show considerable mineralized potential, we found that due to the lower magmatic temperature, delayed exsolution of the hydrothermal solution, and very thick sedimentary cover, the Cu-polymetal ore efficiency associated with granitic plutons in this area is generally low; the relatively higher ore-productivity (efficiency) appears mainly in and around small rock bodies, rock margins, and the contacting zone between different lithologies. Most ore spots, no matter their size, fall into areas with nonzero efficiency values. There seems to be no interdependence between most ore spots of smaller size and ore efficiency, whereas efficiency is essential to regional small- and medium-scaled metallogensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号