首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hana Ridge, the longest submarine rift zone in the Hawaiianisland chain, extending from Maui 140 km to the ESE, has a complexmorphology compared with other Hawaiian rift zones. A totalof 108 rock specimens have been collected from the submarineHana Ridge by six submersible dives. All of the rocks (76 bulkrocks analyzed) are tholeiitic basalts or picrites. Their majorelement compositions, together with distinctively low Zr/Nb,Sr/Nb, and Ba/Nb, overlap those of Kilauea lavas. In contrast,the lavas forming the subaerial Honomanu shield are intermediatein composition between those of Kilauea and Mauna Loa. The compositionalcharacteristics of the lavas imply that clinopyroxene and garnetwere important residual phases during partial melting. The compositionsof olivine and glass (formerly melt) inclusions imply that regardlessof textural type (euhedral, subhedral–undeformed, deformed)olivine crystallized from host magmas. Using the most forsteriticolivine (Fo90·6) and partition coefficients  相似文献   

2.
Origin of the Differentiated and Hybrid Lavas of Kilauea Volcano, Hawaii   总被引:1,自引:6,他引:1  
Kilauea Volcano has erupted lava from its summit caldera andfrom two rift zones that extend from the summit towards theeast and south-west. Lavas erupted from the summit of the volcanodiffer from each other principally in their content of olivineand define lines of ‘olivine control’ on magnesiavariation diagrams. Lavas erupted on the rift zones may be similarin composition to the summit lavas or may be differentiatedby processes that involve minerals other than olivine. All ofthe differentiated lavas have less than 6·8 per centMgO and plot off the extension of olivine control lines forthe summit lavas. Prehistoric vents (before A.D. 1750) fromwhich differentiated lavas have been erupted are found on theeast rift zone and in the western Koae fault zone adjacent tothe south-west rift zone; historic vents for differentiatedlavas are confined to the east rift zone. Twenty-one new analysesare presented for several of the east rift differentiates andfor the newly discovered differentiates adjacent to the south-westrift zone. The differentiates have MgO as low as 3·9per cent and SiO2 as high as 56 per cent; both extremes arefound in the prehistoric lavas adjacent to the south-west rift. Detailed petrochemical studies suggest the following conclusions:
  1. Thechemical composition of magma erupted at Kilauea summitvarieswith the date of eruption. Lavas erupted before 1750,duringthe eighteenth and nineteenth centuries, and in the twentiethcentury form groups that can be distinguished chemically. Ona lesser scale, each Kilauea summit eruption in the twentiethcentury has a chemistry that is distinctive with respect tothe chemistry of every other summit eruption.
  2. During lateprehistoric time pockets of differentiated magmawere formedwithin the rift zones by separation of the liquidremainingafter partial crystallization of bodies of summitmagma. Thisprocess presumably is still going on within theeast rift zone,but the more recently separated liquids havenot yet been eruptedto the surface. The relative time at whichthese differentiatedmagmas were produced can be estimated fromcalculations basedon their chemical compositions, which showthat the differentiatescould lie on the liquid line of descentfor Kilauea summit magmaof prehistoric composition but noton any liquid line of descentfor younger summit magmas.
  3. Lava from some eruptions, notablythe early part of the 1955eruption on the lower east rift,has the composition of theliquid fraction as it is generatedwithin the rift. Lava compositionsof other eruptions, includingthose of the later lavas of 1955,are best explained by mixingof magma supplied from a centralreservoir beneath Kilauea summitwith the differentiated liquidin the rift. Lava from each summiteruption is unique chemically,so it is possible to recognizeits presence or absence as componentsof mixing in such mixedlavas. It appears that summit magmaof composition characteristicof the 1952 and 1961 Halemaumaueruptions contributed to thecomposition of the mixed lavasproduced in the latter part ofthe 1955 eruption. Summit magmaof 1961 composition is alonesufficient to explain the compositionof mixed lavas eruptedin 1960 and 1961. In rift lavas eruptedfrom 1962 to 1965, thecomposition of lava erupted in Halemaumauin 1967, in additionto the 1961 composition, is a componentof mixing, and it isthe dominant summit component in the compositionof the two1965 eruptions. The proportion of summit magma todifferentiatedmagma needed to explain the composition of lavaserupted onthe upper east rift increases from 1961 to 1965;this increaseindicates that the differentiated magma was beingdiluted andused up by repeated flooding of this part of therift zone bymagma supplied from the central reservoir.
  4. The fact that componentsof ‘summit composition’appear in rift eruptionsbefore they appear undiluted in Halemaumausuggests that thecentral reservoir is vertically zoned. Rifteruptions are fedfrom lower levels where younger magma is available,and summiteruptions are fed from the relatively older magmaabove. Thechemical distinction between lava of successive summiteruptionsimplies that significant convective mixing of magmadoes nottake place throughout the central reservoir.
  5. The unique anduniform composition of lava of each successivesummit eruptionalso suggests that summit eruptions end whenall of the magmaof one composition has been erupted. The magmaerupted fromthe upper levels of the reservoir during one cycleis continuallyreplaced from below by younger magma of differentcomposition.In order for eruption to be renewed in Halemaumau,new magmafrom the mantle must be held in storage at intermediatelevelsbefore it attains an ‘eruptive state’.
  6. The hypothesispresented in 2–4 above permits qualitativepredictionsconcerning future lava compositions. The compositionof thenext lava to be erupted in Halemaumau is expected tobe distinctfrom that of the 1967 eruption, and this compositionwill presumablybe identified in rift eruptions occurring between1967 and thetime of its appearance in Halemaumau.
  7. Differentiates of prehistoricage also were apparently formedin the same way as those ofhistoric age, but the mixing cannotbe described quantitativelybecause of poor control on the stratigraphyand the compositionsof erupted lavas. One lava in the Koaegroup, that from YellowCone, appears to be a mixture of a picriticmagma (12 per centMgO) with a differentiated liquid with lessthan 2·5per cent MgO and nearly 60 per cent SiO2.
  相似文献   

3.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

4.
Low-Pressure Experimental Constraints on the Evolution of Komatiites   总被引:1,自引:0,他引:1  
THY  P. 《Journal of Petrology》1995,36(6):1529-1548
Melting experiments were performed on a komatiitic basalt with17 wt% MgO from Munro Township, Ontario, at I-atm pressure andan oxygen fugacity controlled approximately to the fayalite-magnetite-quartzbuffer. The experiments showed that olivine appears at 1344±5°C,spinel at 1334±6°C plagioclase at 1185±5°C,augite at 1176±5°C and pigeonite at 1154±6°C.Compositionally, olivine varies from Fo90 to Fo74 and displaysan average KFe/MgD (ol/liq) of 0•32. The spinels are chromitesand chromian spinels with Mg/(Mg + Fe2+) ratios between 0•66and 0•;32, which show a marked correlation with meltingtemperature. The pyroxenes show an average KFe/MgD (px/liq)of 0•26, identical for augite and pigeonite. Plagiodaseranges compositionally between An82 and An72 Plotted in thepseudo-quaternary basalt phase diagram, the liquid line of descentis similar to that observed for quartz tholeiitic magmas. Therefore,the low-pressure, late-stage evolution products of komatiiteand basaltic komatiite parental magmas will chemically and mineralogicallybe ferrobasaltic quartz tholeiites. High-temperature and high-pressuremodeling suggests that the main observed compositional variationof Munro komatiites can be explained by low-pressure crystalfractionation and accumulation of olivine into komatiite liquidswith below 21•5–23•5 wt% MgO and eruptive temperaturesbelow 1435–1465°C for oxygen fugacities between thefayalite-magnetite quartz (FMQ) and iron-wiistite (IW) buffers.The maximum magnesium content of liquid komatiites, assumingequilibrium Fo94 olivine, is 27–29 wt% MgO and eruptivetemperatures are between 1515 and 1540°C. KEY WORDS: komatiites; experimental petrology; Munro Township; Ontario  相似文献   

5.
The Micho?ch-Guanajuato Volcanic Field (MGVF) of central Mexicocontains 900 cinder and lava coes but lacks the large activecomposite volcanoes found in other portions of the Mexican VolcanicBelt (MVB). Scoriae and lavas from these cinder cones are primarilyolivine-basalts and olivine-andesites containing phenocrystsof olivine (plus Cr-rich spinel inclusions), plagioclase, and,less frequently, augite; pyroxene- and hornblende-andesitesare subordinate. Most samples are calcalkaline; however, alkalineand transitional rocks are also found. Compositional variationat individual cones is usually less than 5 per cent SiO2 andat Volc?n Paricutin (1943–1952) and Volc?n Jorullo (1759–1774),lava compositions have become more silica-rich with time. Alkaline cinder cones are generally older, but in the late Quaternary,both calc-alkaline and alkaline magmas erupted in the southernpart of the MGVF. Positive correlations between K, Zr, and Baand distance from the Middle America trench are distinct forevolved lavas; no correlations are found for less differentiatedlavas. In contrast, a correlation between decreasing Mg, Ni,and Cr and distance from the trench is found. In comparison to composite volcanoes in the MVB, the cinder-conelava are typically more basic. Four samples have mg-numbersand Ni contents which indicate possible mantle source regions.These samples include calc-alkaline, transitional and alkalinelavas, but all contain phenocrysts and/or microphenocrysts ofolivine, augite, and plagioclase; in these high-Mg lavas, spinelinclusions in olivine are Cr-rich. Those high-Mg lavas withsmall amounts of coexisting olivine, augite, and plagioclasephenocrysts plot close to a high-pressure (8 kb ? H2O) 0l-Aug-Plcotectic. Others project between this high-pressure clusterand the 1 atm. cotectic, indicating polybaric fractionation.Low-Mg lavas in the northern part of the MGVF result from fractionationat relatively shallow depths. Estimated olivine equilibrium temperatures decrease from about1200?C with increasing FeO/FeO + MgO, which is also accompaniedby an increase in H2O. Relative oxygen fugacities (relativeto NNO) calculated for lavas with Fe2O3+FeO show that NNO increasessystematically during an eruption, and this is well displayedat both Paricutin and Jorullo. The more oxidized lavas may containhornblende, and do so at Colima. The calc-alkaline lavas fromthroughout the MGVF only span the redox state of the Jorulloeruption, and all these continental magmas are 2–3 ordersof magnitude more oxidized than their submarine counterparts. Petrographic and mineralogical evidence supports the absenceof long-lived shallow magma reservoirs, consistent with theobserved small magma output rate in the MGVF.  相似文献   

6.
The major element chemical compositions of lava from four eruptionson the east rift zone of Kilauea between August 1968 and October1971 reflect three petrologic processes:
  1. Production of chemically distinct batches of magma in the mantle.
  2. Separation of olivine, augite, and plagioclase from liquidduringflow in the rift-zone conduits.
  3. Mixing of differentmagmas during ascent to the surface.
Chemically none of the four Kilauea east-rift eruptions matchesthe preceding summit eruption in Halemaumau that ended in July1968. The Mauna Ulu eruption, May 1969 to October 1971 (thelast of flie east-rift eruptions), can be divided into fiveolivine-controlled and chemically distinct variants. Three ofthese characterize the first seven months of the eruption andare closest in composition to the 1967–8 Halemaumau eruption.Variants 4 and 5 were erupted later and have compositions thatare distinctly different from that of the 1967–8 eruption.Major differences are higher Al2O3 (0?15–0?23 per cent),and lower K2O (0?07–0?10 per cent) and TiO2 (0?12–0?23per cent) in variants 4 and 5 at the same MgO content. Somelavas from eruptions in August and October 1968 and February1969, have olivine-controlled magma compositions that are identicalto mixtures of Mauna Ulu variants 1–3 and the 1967–8composition. This observation fits an hypothesis advanced earlierby T. L. Wright and R. S. Fiske that magmas in the central magmachamber become mixed with magmas in the rift zone and can beidentified as mixing components of rift eruption magmas beforethey appear as distinctive magmas in summit eruptions. Lavas representing mixing of olivine-controlled magma with differentiatedmagma were erupted in October 1968, February 1969, and in Mayand December 1969. The changes in amount of K2O and TiO2 during the latter partof the 1969–71 Mauna Ulu eruption are the reverse of theoverall secular change in composition of Kilauea summit lavasfrom pre-1750 through 1967–8. The K2O and TiO2 contentsof the latest overflows during the 1969–71 Mauna Ulu eruption(April 1971) are comparable to that of lava erupted at Kilaueasummit prior to 1750. The changing chemistry of Kilauea magma is found to be of useas a ‘tracer’ in the complex Kilauea conduit system.Application of these data to older lava sequences is difficulbecause of the complexity of the processes controlling lavacomposition and the absence of detailed information about thetime-space chemical variation during individual eruptions.  相似文献   

7.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

8.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

9.
Glasses from Mauna Loa pillow basalts, recent subaerial vents, and inclusions in olivine were analyzed for S, Cl, F, and major elements by electron microprobe. Select submarine glasses were also analyzed for H2O and CO2 by infrared spectroscopy. The compositional variation of these tholeiitic glasses is dominantly controlled by crystal fractionation and they indicate quenching temperatures of 1,115-1,196 °C. Submarine rift zone glasses have higher volatile abundances (except F) than nearly all other submarine and subaerial glasses with the maximum concentrations increasing with water depth. The overwhelming dominance of degassed glasses on the submarine flanks of Mauna Loa implies that much of volcano's recent submarine growth involved subaerially erupted lava that reached great water depths (up to 3.1 km) via lava tubes. Anomalously high F and Cl in some submarine glasses and glass inclusions indicate contamination possibly by fumarolic deposits in ephemeral rift zone magma chambers. The relatively high CO2 but variable H2O/K2O and S/K2O in some submarine rift zone glasses indicates pre-eruptive mixing between degassed and undegassed magma within Mauna Loa's rift system. Volatile compositions for Mauna Loa magmas are similar to other active Hawaiian volcanoes in S and F, but are less Cl-rich than Ll'ihi glasses. However, Cl/K2O ratios are similar. Mauna Loa and Ll'ihi magmas have comparable, but lower H2O than those from Kilauea. Thus, Kilauea's source may be more H2O-rich. The dissimilar volatile distribution in glasses from active Hawaiian volcanoes is inconsistent with predictions for a simple, concentrically zoned plume model.  相似文献   

10.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

11.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

12.
Picritic lava flows near Lijiang in the late Permian Emeishanflood basalt province are associated with augite-phyric basalt,aphyric basalt, and basaltic pyroclastic units. The dominantphenocryst in the picritic flows is Mg-rich olivine (up to 91·6%forsterite component) with high CaO contents (to 0·42wt %) and glass inclusions, indicating that the olivine crystallizedfrom a melt. Associated chromite has a high Cr-number (73–75).The estimated MgO content of the primitive picritic liquidsis about 22 wt %, and initial melt temperature may have beenas high as 1630–1690°C. The basaltic lavas appearto be related to the picritic ones principally by olivine andclinopyroxene fractionation. Age-corrected Nd–Sr–Pbisotope ratios of the picritic and basaltic lavas are indistinguishableand cover a relatively small range [e.g. Nd(t) = –1·3to +4·0]. The higher Nd(t) lavas are isotopically similarto those of several modern oceanic hotspots, and have ocean-island-likepatterns of alteration-resistant incompatible elements. Heavyrare earth element characteristics indicate an important rolefor garnet during melting and that the lavas were formed byfairly small degrees of partial melting. Rough correlationsof isotope ratios with ratios of alteration-resistant highlyincompatible elements (e.g. Nb/La) suggest modest amounts ofcontamination involving continental material or a relativelylow-Nd component in the source. Overall, our results are consistentwith other evidence suggesting some type of plume-head originfor the Emeishan province. KEY WORDS: Emeishan; flood basalts; picrites; mantle plumes; late Permian  相似文献   

13.
Fukujin Seamount is a large, active, submarine volcano on thevolcanic front in the northernseamount province (NSP) of theMariana island arc (MIA). Five dredge hauls from the summitand upper flanks of Fukujin recovered mainly highly porphyriticbasaltic andesites. A few nearly aphyric samples are medium-Ksiliceous andesites (SiO2 = 62%, K2O = 1•5%). Fukujin andmost other large arc-front volcanoes of the northern MIA havetholeiitic (iron-enrichment) fractionation trends. This contrastswith the calc-alkaline trends of many smaller seamounts. A negativecorrelation of modal plagioclase content with bulk-rock SiO2,as well as bulk-rock major and trace element variation trends,and glass analyses, suggests that lavas with >30 vol.% phenocrystsand <55 wt.% SiO2 are partial cumulates. The presence ofbimodal phenocryst populations along with reversed to normalzoning of phenocrysts is explained by magma mixing of andesiticand basaltic liquids. Hybrid basaltic andesites probably formedby the accumulation of plagioclase in a tholeiitic magma chamberundergoing replenishment and mixing at a shallow crustal level.A petrogenetic model is presented for the origin of basalticandesite by combined magma mixing and fractional crystallization.Aphyric siliceous andesites can be modelled by simple fractionationof basaltic andesite. The early fractionating assemblage consistedmainly of plagioclase and clinopyroxene, with lesser olivineand minor magnetite, but plagioclase remained suspended in themelt. The later fractionating assemblage was dominated by plagioclasewith orthopyroxene instead of olivine. *Present address: 2260 rue Panet, Montreal, Quebec, H2L 3A6, Canada.  相似文献   

14.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   

15.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

16.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

17.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

18.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

19.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

20.
We have performed time series experiments for periods rangingfrom 3 min to 44 h on the interaction of granite melt and partiallymolten basalt at 920C and 10 kbar, in the presence of 5 wt.%water. With time, the assemblage of the basalt domain changesfrom predominantly amphibole+plagioclase to clinopyroxene+garnet;the melt fraction increases from {small tilde}2•5 to 40%;and between the two domains, the melt compositions progressivelyequilibrate. Initially in each run, melts of the basalt domainhave uniform plateau concentrations for SiO2, Al2O3, CaO, MgO,and FeO because the activities of these components are regulatedby the mineral assemblage, but at advanced stages of reaction,no such control is evident. We have derived analytical expressionsto describe and simulate the diffusion profiles. The concentrationprofiles for SiO2, Al2O3, CaO, and Na2O in the granite, emanatingfrom the basalt–granite interface, have been used to estimateeffective diffusivities. The values from the shorter runs arecompared with those of the experiment of longest duration forwhich we assumed finite couples in our calculations. In thediffusion calculations for K2O the difference in melt fractionbetween the two domains is accounted for. The resulting values(in cm2/s) are: DNa2O=6 10–7, DK2O=3 10–7, DMgO=9 10–8, DCaO=(4–6) 10–8, and DSiO2 and DAl2O3=(3–0•6) 10–8. They are in reasonable agreement with values fromother studies. On the basis of our experiments we calculatethat mafic enclaves of magmatic origin should equilibrate toa large degree with their host magma in slowly cooling non-convectinggranitic plutons. Enclaves approaching complete re-equilibrationretain distinctly higher modal amounts of mafic minerals. Theydo not compositionally resemble binary magma mixtures, but aremore like host magma with accumulated crystals. We show thatthe modal differences between enclave and host are indicativeof the temperature of homogenization and that, in principle,this temperature can be deduced from equilibrium phase diagrams. * Present address: Mineralogisch-Petrologisches Institut, Universitt Gttingen, Goldschmidtstrasse 1, 3400 Gttingen, Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号