首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

2.
Composition and genesis of glacial hummocks, western Wisconsin, USA   总被引:1,自引:0,他引:1  
Glacial hummocks associated with the Superior Lobe in western Wisconsin are stagnant-ice features composed of melt-out till, meltwater-stream sediment, and flow till. The greater proportion of melt-out till in these hummocks than in hummocks described elsewhere suggests that a model of extensive, supraglacial reworking of supraglacially released debris does not apply to the western Wisconsin hummocks. Interpretation of melt-out till in hummock exposures is based on its strong fabric oriented parallel to regional ice-flow direction. Other features of this melt-out till include poorly developed stratification (color banding and discontinuous thin sandy lenses), and minor faulting, both of which support a melt-out origin. We suggest that as stagnant, debris-rich ice began to melt, supraglacially released debris was deposited as flow till and meltwater-stream sediment (with some debris-flow sediment and lake sediment), but as the thickness of supraglacial debris increased, debris melting out at depth was stabilized, allowing features characteristic of melt-out till to be retained. Because the supraglacial debris was sandy and the stagnant ice was likely at the pressure-melting point, the supraglacial debris was well drained and did not readily fail and flow. Debris volume in the glacier generally was greater at the glacier margin, but lateral and longitudinal variations within this zone were caused by thrusting, freezing-on, or ice-margin fluctuations, which in turn resulted in variations in hummock relief. Ice-walled-lake plains are commonly associated with the hummocks and developed where debris volume was small.  相似文献   

3.
Sediments deposited in a lake at the front of a glacier in the Svartisen area, Norway, have been studied between 1957 and 1974. Until 1959, they were almost completely covered by an outwash plain (sandur), but subsequent erosion has exposed glacial lake sediments more than 70 m deep within a rock basin about 2·5 km long and 1 km wide. The basin was filled by sand and silt carried from beneath the glacier Austerdalsisen by two rivers, each of which deposited a delta in the lake. As the deltas advanced, laminated pro-delta silt was covered by crossbeds of fine sand and silt, and by near-horizontal sheets of fine sediments laid down between the delta-fronts and the distal end of the rock basin. Although both slumping and loading caused minor disturbance of sediments at the lake floor, deformation was of local significance only. Movement of a mass of sediment across the floor, probably triggered by a ‘seismic event’ related to movement of the glacier or to calving at the floating tongue, created a recumbent fold in laminated sand and silt, but transfer of sediment over the lake bed was rare once it had been deposited. Varves are not common at Austerdalsisen, indicating that water temperature, lake chemistry or variations of water and sediment discharge from the glacier were unfavourable for their formation; rhythmic deposition from density flows of sediments carried from beneath the glacier rarely occurred within the Austerdalsisen basin.  相似文献   

4.
《Sedimentary Geology》2007,193(1-4):105-129
The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as “glacial Lake Leine”, where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l.Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10°–28°, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area.The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3°–30°) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.  相似文献   

5.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   

7.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

8.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

9.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

10.
Glacial mélange in the open-cast mine at Amsdorf, central Germany, consists of several square meters of large, sorted sediment blocks embedded in till. The blocks are composed of largely intact to slightly deformed glaciofluvial and glaciolacustrine sand, silt and clay, initially deposited in a proglacial lake (2–3 km up-ice) and subsequently overridden by a glacier. The blocks typically have cuboid to subrounded outlines, are randomly distributed in the till, and the contacts with the surrounding till are distinctly sharp. Underneath the mélange are varved clays which exhibit strong deformations occasionally intervening with entirely undisturbed areas. It is suggested that the blocks were entrained into debris-rich basal-ice by bulk freeze-on when the glacier sole was lowered onto the bottom of an overridden lake. After entrainment the blocks were transported englacially and re-deposited (with far-traveled till matrix) as a melt-out till from stagnant ice. The glacier moved mainly by sliding enhanced by low-permeability varved clays in the substratum. The glacier is believed to have been of a polythermal type. These results show that bulk freeze-on can lead to entrainment of soft sediment blocks at least 20 m2 in size, and that these blocks can be englacially transported with little or no deformation for several kilometers and more. The occurrence of deformed and undeformed clays under the till mélange indicates a possible mosaic of coupled and decoupled ice, the latter caused by a thin, transient subglacial water film separating the bed from the glacier.  相似文献   

11.
This raised delta structure is an ice-contact deltaic complex with a volume of c. 4.4.109 m3, deposited c . 9500 yr BP in a shallow wide 'fjord' during the retreat of the Scandinavian ice cap. The delta plain lies at an altitude of 200–223 m. It aggraded c . 20 m above the contemporaneous sea level during a regional marine regression. The braidplain palaeochannel characteristics indicate a peak meltwater discharge of 7–9 103 m3/s. Calculations based on a glacial ablation model indicate a mid-summer discharge of c . 5.5 103 m3/s. However, the fluvial topset of the delta has an erosive base whose altitude decreases upstream and indicates stream incision by more the 6 m below the contemporaneous sea level. The deep scour is ascribed to episodic floods over the relatively short delta plain, which exceeded direct ablation-associated discharges. The depositional time-span of the delta is assessed to have been 70 years, calculated from coastal gradient and shoreline displacement curves. The average sedimentation rate of the delta is thereby inferred to have been extremely high, c . 6. 107 m3/yr. The sedimentation is thought to reflect 'extreme' ice-margin conditions, where the sediment and water discharge was maximized by full-scale ablation, with simultaneous subglacial, englacial and supraglacial sediment and water supply. These conditions might further coincide with an abundant rainfall in the catchment area or the drainage of dammed waters, initiating episodic floods which eroded deep beneath sea level. As a whole, the study illustrates the hydrological conditions of proglacial sedimentation at the front of the rapidly retreating last Scandinavian ice cap.  相似文献   

12.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

13.
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed icecored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions.  相似文献   

14.
We present results from three geophysical campaigns using high‐resolution sub‐bottom profiling to image sediments deposited in Loch Ness, Scotland. Sonar profiles show distinct packages of sediment, providing insight into the loch's deglacial history. A recessional moraine complex in the north of the loch indicates initial punctuated retreat. Subsequent retreat was rapid before stabilisation at Foyers Rise formed a large stillstand moraine. Here, the calving margin produced significant volumes of laminated sediments in a proglacial fjord‐like environment. Subsequent to this, ice retreated rapidly to the southern end of the loch, where it again deposited a sequence of proglacial laminated sediments. Sediment sequences were then disturbed by the deposition of a thick gravel layer and a large turbidite deposit as a result of a jökulhlaup from the Spean/Roy ice‐dammed lake. These sediments are overlain by a Holocene sheet drape. Data indicate: (i) a former tributary of the Moray Firth Ice Stream migrated back into Loch Ness as a major outlet glacier with a calving margin in a fjord‐like setting; (ii) there was significant sediment supply to the terminus of this outlet glacier in Loch Ness; and (iii) that jökulhlaups are important for sediment supply into proglacial fjord/lake environments and may compose >20% of proglacial sedimentary sequences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper defines the principal architectural elements present within the Pleistocene, glaciolacustrine basin-fill of the Copper River Basin in Alaska. The Copper River drains an intermontane basin via a single deeply incised trench through the Chugach Mountains to the Gulf of Alaska. This trench was blocked by ice during the last glacial cycle and a large ice-dammed lake, referred to as Lake Atna, filled much of the Copper Basin. Facies analysis within the basin floor allows a series of associations to be defined consistent with the basinward transport of sediment deposited along calving ice margins and at the basin edge. Basinward transport involves a continuum of gravity driven processes, including slumping, cohesive debris flow, hyperconcentrated/concentrated density flows, and turbidity currents. This basinward transport results in the deposition of a series of subaqueous fans, of which two main types are recognised. (1) Large, stratified, basin floor fans, which extend over at least 5 km and are exposed in the basin centre. These fans are composed of multiple lobes, incised by large mega-channels, giving fan architectures that are dominated by horizontal strata and large, cross-cutting channel-fills. Individual lobes and channel-fills consist of combinations of: diamict derived from iceberg rainout and the ice-marginal release of subglacial sediment; multiple units of fining upward gravels which grade vertically into parallel laminated and rippled fine sands and silts, deposited by a range of density flows and currents derived from the subaqueous discharge of meltwater; and rhythmites grading vertically into diamicts deposited from a range of sediment-density flows re-mobilising sediment deposited by either iceberg rainout or the ice-marginal release of sediment. (2) Small, complex, proximal fans, which extend over less than 2 km, and are exposed in the southern part of the basin. These fans are composed of coalescing and prograding lobes of diamict and gravel deposited both directly by subaqueous meltwater and from sediment-density flows. These lobes are cross-cut by a range of sand and gravel-filled troughs and channels cut by subaqueous outwash, and either overlie or are overlain by horizontal sheets of gravel and diamict deposited from a range of sediment-density flows. The fans are, therefore, characterised by a complex, and laterally variable facies, architecture. Water depth, proglacial topography, stability of meltwater portals and sediment supply may all be important in determining the type of subaqueous fan present at any one location. We suggest that the Copper River basin-fill is dominated by packages of sediment containing multiple subaqueous fans with individual fans separated by units of diamict. Each sediment package is in turn separated from the next by a palaeo-landsurface shaped by interstadial/interglacial fluvial processes and by volcanic debris flows.  相似文献   

16.
The stratigraphy in Hamnsundhelleren is as follows. A basal weathered rock bed of unknown age is followed by laminated clay deposited under stadial conditions and correlated with palaeomagnetism to the Laschamp excursion (43–47 000 yr BP). Angular blocks, bones and clay above this are 14C dated to the Ålesund Interstadial (28–38 000 yr BP). Another stadial laminated clay following the Ålesund Interstadial includes a palaeomagnetic excursion correlated with Lake Mungo (28 000 yr BP). The newly discovered Hamnsund Interstadial above this consists of frost-weathered clay and scattered angular blocks. It is 14C dated to 24 500 yr BP on bones mixed into the Ålesund Interstadial. The Hamnsund Interstadial is succeeded by another stadial laminated clay and then a Late-glacial–Holocene mixture of bones and blocks. In Hamnsundhelleren and other similar caves four successive phases of sedimentary environments for each ice-free–ice-covered cycle have been identified: (i) ice-free phase (deposition of bones and frost-weathered blocks); (ii) subaerial ice-dammed lake phase (sand or silt deposited in a lateral glacial lake); (iii) subglacial ice-dammed lake phase (cave closed by ice, deposition of till, debris flows and laminated clay); (d) ice-plugged phase (cave is plugged by frozen lake water and/or glacial ice, no deposition).  相似文献   

17.
A numerical ice-sheet model was run in order to produce reconstructions of the Late Weichselian ice coverage of Franz Josef Land, Russian High Arctic. The model grid covers the archipelago and surrounding shelf, but does not include the whole Barents-Kara region or the extensive ice cover that may have built up there. One experiment, where rates of iceberg calving at the grounded margin were curtailed because of the assumed presence of permanent thick sea ice, yielded a single I.8 km-thick ice dome which covered the entire archipelago and surrounding sea. If, however, iceberg calving were included in the model's environmental input, the extent of the ice sheet would be limited to the periphery of the archipelago. If a large ice sheet existed over Franz Josef Land, the deglaciation of the islands may have been linked to the decay of the adjacent Barents-Kara Sea Ice Sheet, permitting iceberg calving (enhanced by relative sea-level rise) to occur. The introduction of a water-depth-related iceberg calving function at 15 000 yr ago forced an initial rapid rate of ice-sheet decay of 30 000 km3 1000 yr'. However, as the ice sheet thinned, and isostatic rebound began, the calculated rate of iceberg calving was reduced such that ice remained over the archipelago at 8000 yr ago. The model's failure to simulate complete ice-sheet decay by 8000 yr ago is at variance with radiocarbon-dated raised terraces on Franz Josef Land, which indicates the complete deglaciation of the islands at this time.  相似文献   

18.
Western Lake Geneva (le Petit-Lac) was filled during the Quaternary over a major erosion surface truncating the cemented, folded and thrusted Tertiary sediments of the foreland Alpine basin. The carving of the lake occurred during Quaternary glaciations with ice originating from the Rhone valley catchment basin flowing in two branches oriented SW and NE over the Swiss Plateau. Lake Geneva is situated on the South-Western branch of this paleo ice-cap.For the first time, a dense grid of high-resolution seismic profiles (airgun 5-inch3, airgun 1-inch3 and echosounder) has imaged the whole Quaternary sequence, providing a paleoenvironmental interpretation and a detailed reconstruction of the Rhone glacier retreat stages during glacial events that led to the formation of western Lake Geneva.The Quaternary sequence filling up the bedrock valley is exceptionally thick with up to 220 m of deposits and consists of glacial, glacio-lacustrine and lacustrine sediments. Fourteen seismic units have been defined (units U1–U14). Unit U1 represents the remnants of glacial deposits older than the last glacial cycle, preserved in the deepest part of the lake and in secondary bedrock valleys. Unit U2 represents gravel and sands deposited by meltwater circulation at the bottom of the glacial valley. Unit U3 is a thick, stratified unit marking the beginning of the deglaciation, when the Rhone glacier became thinner and buoyant and allowed the formation of a subglacial lake. Younger glacial units (units U4, U5, U7, U9, U11) are acoustically chaotic sediments deposited subglacially under the water table (undermelt tills), while the glacier was thinning. These glacial units are bounded by synform erosion surfaces corresponding to readvances of the glacier.The transition from a glacial to a glacio-lacustrine environment started with the appearance of a marginal esker-fan system (unit U6). Esker formation was followed by a small advance–retreat cycle leading to the deposition of unit U7. Then, the ice front receded and stratified sediments were deposited in a glacio-lacustrine environment (units U8, U10 and U12). This retreat was punctuated by two readvances – Coppet (unit U9) and Nyon (unit U11) – producing large push moraines and proglacial debris flows. Finally, a lacustrine environment with a characteristic lake current pattern and mass movement deposits took place (units U13 and U14).Except for unit U1, the sedimentary sequence records the Würmian deglaciation in a fjord-like environment occupied by a tidewater glacier with a steep, calving ice front. The presence of an esker-fan system reveals the importance of subglacial meltwater flow in continental deglaciation. Push-moraines and erosion surfaces below the glacier indicate at least 5 readvances during the deglaciation thus revealing that oscillations of ice front are the key process in deglaciation of perialpine fjord-lakes. The dating of these continental glacier fluctuations would allow correlation with oceanic and ice records and help to understand the climatic mechanisms between oceans and continents.  相似文献   

19.
Three stages of deposition are distinguished in thermokarst-lake-basin sequences in ice-rich permafrost of the Tuktoyaktuk Coastlands, western arctic Canada: (1) widespread retrogressive thaw slumping around lake margins that rapidly transports upland sediments into thermokarst lakes, forming a distinctive basal unit of impure sand and/or diamicton; (2) a reduction or cessation of slumping-because of the pinching out of adjacent ground ice, slump stabilization or climatic cooling, that reduces the input of clastic sediment, permitting reworking of sediment around lake margins and suspension settling, principally in basin centres; (3) lakes drain and deposition may continue by gelifluction and accumulation of in situ peat or aeolian sand. Radiocarbon dating of detrital peat and wood from a progradational sequence (basal unit) defines a lateral younging trend in the direction of progradation. A progradation rate is calculated to be ~ 4 cm yr?1, consistent with rapid deposition during stage (1) above. The nonuniform nature of the trend is attributed to episodic influxes of old organic material by slumping and reworking by waves and currents. In comparison with thermokarst-lake-basin sequences previously described in Alaska, Canada and Siberia, the middle unit of those in the Tuktoyaktuk Coastlands is similar, whereas the basal unit is generally thicker and, by contrast, often contains diamicton. These differences are attributed, respectively, to larger-scale resedimentation of upland sediments by retrogressive thaw slumping and debris-flow deposition in thermokarst lakes in the Tuktoyaktuk Coastlands. Compared with the sediments within supraglacial lakes in areas of moderate to high relief, the middle unit of thermokarst-lake-basin sequences in the Tuktoyaktuk Coastlands lacks clastic varves and the basal unit is much thinner and texturally less variable. These differences are attributed to higher relief and larger volumes of meltwater and glacigenic sediment in supraglacial lakes, which promote more suspension settling and resedimentation of glacigenic sediment than in thermokarst lakes in the Tuktoyaktuk Coastlands. It may be impossible to distinguish glacial and periglacial thermokarst-lake-basin sediments in permafrost areas of incomplete deglaciation. Not only is it often difficult to distinguish intrasedimental and buried glacier ice, but the depositional processes associated with thaw of both ice types are presumably the same and the host sediments very similar.  相似文献   

20.
A supraglacial lake was surveyed on the Koxkar Glacier in southwest Tianshan from July to September 2007 and July to September 2008, and the temperature variation characteristics of the lake, debris and debris-free ice were analyzed at different depths to determine the thermal regimes. In addition, the discrepancies of temperature variation characteristics were investigated for different geomorphic units of the ablation zone of the Koxkar Glacier. It was found that daily temperature variation curves for deep water are V-shaped because meltwater from the glacier surface at temperatures of around 0°C feeds the lake and mixes with the relatively high-temperature surface water during the day. As the water temperature rises to approximately 4°C, the mixed water sinks and forms a low-temperature trough in the deep water of the lake in the middle of the day. The vertical lapse rate of the lake water temperature against depth (?0.33°C/m) has a magnitude lower than that of the debris (?4.29°C/m) and that of the debris-free ice (?0.38°C/m) in the Koxkar Glacier??s ablation zone. The temperature curve for the surface water largely varied between the temperature curves for the debris at depths of 0.2 and 0.5?m. The surface thermal condition of the ablation zone is significantly affected by the daily weather, and there is a limited influence in debris at a depth of 1?m and in the lake at a depth of 5?m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号